2020 IEEE European Symposium on Security and Privacy (EuroS&P)

Detecting Malware Injection with Program-DNS Behavior

Yixin Sun®, Kangkook Jee?, Suphannee Sivakorn®, Zhichun Li?, Cristian Lumezanu®, Lauri Korts-Parn®,
Zhenyu Wu’, Junghwan Rhee®, Chung Hwan Kim®, Mung Chiang®, Prateek Mittal’
YUniversity of Virginia University of Texas at Dallas ®Rajamangala University of Technology Tawan-ok
4Stellar Cyber °NEC Labs America %Cyber Defense Institute " Google 8Purdue University ° Princeton University

Abstract—Analyzing the DNS traffic of Internet hosts has
been a successful technique to counter cyberattacks and
identify connections to malicious domains. However, recent
stealthy attacks hide malicious activities within seemingly le-
gitimate connections to popular web services made by benign
programs. Traditional DNS monitoring and signature-based
detection techniques are ineffective against such attacks.

To tackle this challenge, we present a new program-level
approach that can effectively detect such stealthy attacks.
Our method builds a fine-grained Program-DNS profile for
each benign program that characterizes what should be the
“expected” DNS behavior. We find that malware-injected
processes have DNS activities which significantly deviate
from the Program-DNS profile of the benign program. We
then develop six novel features based on the Program-DNS
profile, and evaluate the features on a dataset of over 130
million DNS requests collected from a real-world enterprise
and 8 million requests from malware-samples executed in a
sandbox environment. We compare our detection results with
that of previously-proposed features and demonstrate that
our new features successfully detect 190 malware-injected
processes which fail to be detected by previously-proposed
features. Overall, our study demonstrates that fine-grained
Program-DNS profiles can provide meaningful and effective
features in building detectors for attack campaigns that
bypass existing detection systems.

1. Introduction

Recent successful attacks reveal the ability of attackers
to obfuscate the DNS activity of the victim by hiding
requests to malicious domains in plain sight inside legiti-
mate traffic [50], [31]. Moreover, they delegate malicious
logic to long-lived and trusted benign programs, who then
establish command and control (C&C) channels through
connections to legitimate sites (e.g., Twitter, Dropbox,
Google) [27], [2], [26]. Such attacks, which we call
stealthy attacks throughout the paper, leave no or little
footprint on the hosts, thereby evading host defense. Their
seemingly innocuous DNS requests are also immune to
network DNS-based detection.

Such stealthy attacks are becoming more and more
common practice across attackers who want to bypass the
existing host and perimeter defenses (e.g., AV scanners
and firewalls), which are universally deployed in a modern
computing environment. Recent studies report the rapid
adoption of such stealthy attack vectors — cyberattacks
that impersonate benign programs surged by 432% and
265% in 2017 and 2018 respectively, constituting 35% of

© 2020, Yixin Sun. Under license to IEEE.
DOI 10.1109/EuroSP48549.2020.00042

552

the cyberattacks, and are ten times more likely to succeed
than traditional attacks [52], [28].

Attackers now actively employ and combine host and
network evasion techniques to bypass the traditional de-
fenses [5], [6], [7], [13], [15], [48]. Previous defenses fall
short in detecting such stealthy attacks as they only con-
sider network-based features that aim to detect malicious
domains and IPs, whereas the attackers can take advantage
of legitimate domains to host malicious content. A recent
approach integrates network-based features with process-
level information [54], however, it is still not effective at
detecting such stealthy attacks given that the process-level
information are indistinguishable when benign programs
are injected by malware. All these approaches lack insight
into how a benign program is expected to behave.

In this paper, we propose the first program-level fin-
gerprinting approach to build fine-grained, individualized
profile for each benign program that characterizes the na-
ture of their DNS activities. Such a program-DNS profile
can be effectively used to detect stealthy attacks, where
(1) legitimate web services are leveraged to channel C&C
communications, whose DNS queries appear benign, and
(2) trusted benign programs are controlled by malware
logic to carry out all the DNS activities, whose program-
and process-level information appear benign.

We first define three important terms which we will
use throughout the paper.

e Program: a binary executable that represents a soft-
ware or an application. For instance, “Skype.exe” is
a program.

e Process: a distinct runtime instance or execution of a
program, with its own process ID, start time, etc. For
instance, when a user launches the Skype application,
it creates a process of the “skype.exe” program; when
the user exits Skype, the process is terminated. Note
than a program can have many processes.

o Malware-injected Process: a process which is cre-
ated from a benign program, however, has been
injected by malware logic (cross-process injec-
tion [2], [42]). For instance, if a malware injects the
“skype.exe” program and initiates malicious logic,
this process is a malware-injected process.

To build the program-DNS profiles for benign pro-
grams, we collected program data and DNS data from
126 real-world enterprise host machines over the pe-
riod of seven months where we collected over 130 mil-
lion DNS requests along with corresponding processes
from 636 programs. In addition, to evaluate the effec-
tiveness of our program-DNS profiles in detection, we
collected malware samples from different sources with

dates ranging from 2015 to 2019 where we collected
over eight million DNS requests along with corresponding
processes. Among them, we identified 5003 malware-
injected processes which were created from 32 distinct
benign programs. With the data, we design new metrics
to build the program-DNS profile for benign programs,
and then develop them into new features to train machine
learning classifiers to detect malware-injected processes.
We demonstrate the effectiveness of our new features by
comparing the detection results with that of previously-
proposed features on our datasets. In particular, we make
the following contributions:

Building Program-DNS profile. We jointly analyze
all benign processes of each benign program to character-
ize what should be the “expected” behavior of each pro-
gram. We develop two novel sets of metrics, consistency
ratios which measure the similarity of a process’” DNS
requests with other processes of the same program, and
domain types which capture the types of domains queried
by the processes. Our key findings are:

o Benign processes have a very coherent behavior
with high consistency ratios, with consistency ratios
> 0.96 for more than 85% of the processes. On the
contrary, malware-injected processes created from
benign programs have a more erratic behavior with
low consistency ratios, with consistency ratios < 0.2
for 90% of the processes.

Interactive processes (browsers, mail clients) have
less coherent behavior (i.e., lower consistency ratios)
compared to rest of processes (non-interactive), as
their behaviors are driven by users. However, there is
still a clear distinction in consistency ratios between
benign processes and malware-injected processes, es-
pecially when we further narrow down the scope of
analysis to each individual user. For instance, benign
interactive processes have consistency ratios > 0.6
for 57% of the processes, while malware-injected
interactive processes have consistency ratios < 0.1
for 90% of the processes.

Benign processes query significantly less “irrelevant”
domain types (i.e., domains that are not related to the
functionality of the program, defined in Section 4.3)
compared to malicious processes. 65.4% of benign
programs do not query any “irrelevant” domains at
all, while 93.5% of malware programs have processes
that query “irrelevant” domains.

Detecting malware-injected processes. Motivated by
the above findings, we develop six novel features based
on the consistency ratios and domain types. The key
insight behind our features is that a benign process’
DNS behavior is consistent with its program-DNS pro-
file, while malware-injected processes deviate from such
“expected” behavior. We demonstrate the effectiveness
of these new features by using them to train classifiers
to detect malware-injected processes. We also compare
the detection accuracy between our new features and
previously-proposed features [7], [54], [24], [38], [13].
Our key results are:

o By performing ten-fold cross-validation using a Ran-
dom Forest classifier to detect malware-injected pro-
cesses with only our new features, we achieve > 0.99
ROC AUC (area under the Receiver Operating Char-

553

acteristics curve) across all datasets, ranging from
2015 to 2019. The false positive rates are < 0.1%
with true positive rates > 98.5%.
We use 2015 and 2017 datasets as training data
for the Random Forest classifier, and 2018 and
2019 datasets as testing data to perform detection.
We demonstrate that our new features are signifi-
cantly more effective than previously-proposed fea-
tures, where we achieve 94.3% true positive rate
(successfully detect 94.3% of the malware-injected
processes in testing data) with 0% false positive
rate (does not mistakenly flag any benign process
as malicious), compared to 25.9% true positive rate
with previously-proposed features. Furthermore, we
achieve 100% true positive rate with only 0.15% false
positive rate. On the contrary, previously-proposed
features can only achieve up to 94.1% true positive
rate with 0.33% false positive rate (lowest rate, and
true positive rate does not keep increasing until false
positive rate reaches 100%), which completely fail to
detect 190 malware-injected processes (5.9%).
In summary, we propose the first program-level ap-
proach that builds a Program-DNS profile for each benign
program. We demonstrate the effectiveness of such pro-
files in detecting malware-injected processes by evaluating
it using real-world datasets and show that our approach
is significantly more effective compared to previous ap-
proaches.

2. Motivation and Threat Model

We first describe stealthy attacks and how existing
malware detection systems fail to detect them. Then,
we motivate our work on building fine-grained Program-
DNS Profile to detect such attacks by using the Skype
program as an example. Finally, we specify the adversary’s
capabilities for our threat model.

2.1. Evading Host Detection

To overcome universally deployed host security so-
lutions, the attackers hide their identities by impersonat-
ing well-trusted benign programs and carrying out their
missions through the benign programs. A well-known
example is the Fileless malware [41], which hides its
malicious codes and footprints, and executes inside legiti-
mate processes. Fileless attacks are hard to be detected by
conventional defense methods [2], [43] and are estimated
to have grown by 265% in the first half of 2019 and
constituted 35% of all attacks [52], [28].

Cross-process injection. The attack injects arbitrary
code in the address space of a live process. This tech-
nique provides attackers more visibility into benign pro-
cesses as running code in another process may allow
attackers to access system resources and memory (e.g.,
record keystrokes) [43]. Attackers can also migrate their
malicious code to a long-lived background process (e.g.,
system processes) [42], which makes the attack even more
persistent. The code injection attack is hard to detect as
it is implemented using legitimate system APIs officially
supported by Windows. Furthermore, attackers have many
viable options for the injection mechanisms [21], making
the detection even more challenging.

Script-based attack. Attackers also abuse preinstalled
scripting engines to carry out their missions. The scripting
engines allow attackers to directly access core system
components and dynamics that provide variety of prim-
itives to obfuscate payload. Attackers can embed scripts
inside archive files or benign files like Microsoft Office
documents. The scripts are interpreted by whitelisted ap-
plications such as PowerShell and Windows Management
Instrumentation (WMI) and directly run in the memory.

2.2. Evading DNS Monitoring

DNS has been an important primitive for the perimeter
defense. To evade DNS-based monitoring and achieve
the goals, the attackers leverage public well-trusted web
services to hide their traffic among benign network con-
nections. HammerToss [27] malware is one of its kind
that embeds its Command and Control (C&C) location
using cloud services (e.g., twitter handle, an image on
Github). Recently, we see more malware using similar
techniques [44], [20], [45]. For instance, the attacker
group Turla has used Google Apps Script as its C&C
server [22], [23]. MITRE ATT&CKS web service page
enumerates numerous attack instances of this kind [1].

2.3. Stealthy Attacks

As the attackers now have various options to minimize
their footprints and evade host and network detectors, now
we’re seeing attacks that combine the above techniques to
launch stealthy campaigns.

2

7wh
TOR network =

APT29
(actual image)

g —ssL‘tfnrwﬁifmk—

Client Endpoint Mail.google.com Meekreflector
.appspot.com

Google Cloud

Figure 1: POSHSPY attack injects activities through Windows
Management Interface event and leverages Google cloud service
to reach its C&C server.

Figure 1 depicts POSHSPY malware [26] by APT29,
an exemplary attack that is engineered to evade traditional
host and network detectors. After its initial penetration,
the attack attains the persistence on the victim’s system
by embedding its backdoor logic into one of Windows
Management Interface (WMI) event. Then, it connects
to a proxy server hosted on Google cloud using domain
fronting technique, which appears as a connection to le-
gitimate Google service and hides its eventual destination
inside the encrypted traffic. Finally, the proxy server will
connect to the attacker’s C&C server via the Tor network.

Another well-known example is Kazuar [44], a
multi-platform backdoor Trojan that injects into ‘“ex-
plorer.exe” and uses legitimate WordPress blogs as its
C&C servers. In addition, Empire [20] is an open source
post-exploitation framework that provides multiple mod-
ules for cross-process injections, such as Invoke-PSInject.
It can also use Dropbox and GitHub as its C&C servers.

While some techniques have been proposed to mitigate
these attacks that inject into benign programs to perform
malicious activities [62], [12], detections still largely rely

554

Program Process Domain Registrant Country
—»@ skype.com PRy .
—»-@ skype.net %4 Skype r‘ﬂ
> skypeassets.com Comme-
(—»@ hotmail.com
@ live.com
|—»@ bing.com
| msn.com
[~ trouter.io-
> gfx.ms
[~ microsoft.com Mclosoft
Corp.
S
— n PID: 123, 456, ... [—» cloudapp.net
: : —» aspnetcdn.com
1 Skype j |—»@ azureedge.net
1 5";‘“’”'”3 1 |—»© trafficmanager.net
Cm = I microsofttranslator.com A
\—»@ akadns.net —— Inc.

@ aolcdn.com ~———__ AOLInc.

Figure 2: Program-DNS profile of Skype.exe.

on manual investigation and heuristics. In Section 5.4,
we run a POSHSPY attack sample within an isolated
environment and show that our new detection approach
successfully detects the attack.

2.4. Program-DNS Profile

Numerous works [61], [5], [13], [6], [7], [15], [48],
[9] have been proposed to analyze DNS activities on
DNS servers outside the host at different levels of DNS
hierarchies. However, if the malware leverages benign
web services to contact its C&C servers, then its DNS
activities can look completely benign (e.g., querying
mail.google.com), and the existing network-based detec-
tion solutions may fail to detect it. On the other hand,
numerous host-based detection systems have also been
proposed to detect malware through static analysis [16],
[55] as well as dynamic analysis [63], [62]. However, if
the malware injects its activities through benign programs,
then the attacks would become much harder to detect.

The challenge of detecting stealthy attacks with mal-
ware injection that leverage benign web services to com-
municate with C&C servers have motivated us to explore
new fine-grained detection techniques.

Our intuition towards detecting stealthy attacks is that
for each benign program, there should be a Program-DNS
profile that characterizes how processes of the program
would behave. We expect the DNS behavior of benign
processes of the program to be more “stable” as it is
bound to the original program logic. In contrast, when
the program is injected by malware, then the behavior of
the resulting process would be more erratic and deviate
from its benign profile.

Figure 2 illustrates how a Program-DNS profile for a
given program (e.g., Skype.exe) may look by combining
network-based DNS information with process-level infor-
mation from the kernel. Skype.exe program instantiates
itself into multiple processes by loading the executable bi-
nary. Each process sends DNS queries to get IP addresses
and connects to other Skype hosts. The DNS queries can
then be further linked to domain registrants and regis-
tration countries. Here, we can see from the Program-
DNS profile that Skype processes mostly query domains
registered by Skype Inc. and Microsoft Corporation. In

Backend

DNS ! patabase
x A Servers .+
End-host ™
Machines

Domain
i Registration DNS SerY'Ce
®) :

Data Collection System

@ @ e :

Signature, - {\\\\; Process ID, :

Loaded DLL, (\ Process)V starttime, ... :
Kernel

Program Executable

Figure 3: Data collection system in the back-end on end-host
machines.

Section 4, we will develop new metrics to quantify such
Program-DNS profile for each benign program.

2.5. Threat Model

The attacker is capable of compromising end-host
machines with malware, which may inject malicious logic
to long-lived and trusted benign programs to obfuscate
DNS activities. The attacker is also capable of establishing
the C&C servers via various ways, leveraging popular
web services as relays to C&C servers. We assume the
process data collected from kernel space are not tam-
pered and thus the kernel is trusted, which follows the
threat model of previous works on system monitoring
[33], [34], [35], [36], [39], [40], [10], [30], [37], [54].
Kernel-level attacks that compromise security monitoring
systems are beyond the scope of this study. However, we
do consider the possibility of the attacker compromising
our data collection system and tampering the data sent
to the backend database. To ensure the integrity of our
data, we cross-check the collected data from our collection
system with kernel logs and local DNS resolvers for data
consistency. We assume that the enterprise’s IT infrastruc-
ture, including the local DNS resolvers, is trusted and not
compromised by the attack.

3. Data Collection and Statistics

In this section, we describe our data collection ap-
proach and our datasets. We also discuss our data process-
ing methodology and provide an overview of the data.

3.1. Data Collection System

We design our data collection system to be run on
end-host machines, as depicted in Figure 3. The high-level
goal is to collect DNS data (e.g., DNS query activities)
associated with the process- and program-level data (e.g.,
executable path, signatures) of the process that initiates
the DNS query.

In step (1) in the figure, a process is initiated from
a program executable. The process then starts sending
DNS queries, either through step (3) where the process

555

directly sends the query to the recursive DNS server, or
through step (2) where the process delegates the query
to the DNS system service that handles queries for all
processes. Step (2) is more commonly seen in Windows
operating systems, while step (3) is more common in
Linux-based systems. Due to the potential delegation of
DNS queries, in order to accurately associate DNS queries
with the correct process that initiates the queries, our
data collection system needs to intercept the inter-process
communication between the DNS service and the process
to capture such information.

From step (1), (2), and (3), the data collection system
has already passively collected DNS activities (DNS query
and answer) associated with the process-level data (e.g.,
process name, start time, etc.). The system then comple-
ments the data by actively retrieving program-level data
(e.g., binary signatures, etc.) from the kernel (step (4)), as
well as obtaining domain registration information for the
query from external WHOIS server (step (5)).

Finally, the data collection system on each end-host
machine aggregates all the data collected through steps
(1)-(5) for the process, and sends to the centralized back-
end database for storage and further analysis.

3.2. Benign and Malware Data Collection

We build and deploy the data collection system on 126
Windows machines within a corporate environment. The
system records everyday DNS activities of all processes
on each machine, used by real users. We obtained approval
from the corporate’s legal office on the research experi-
ments. Our data collection approach is compliant with the
corporate privacy policy and the collected data is only ac-
cessible by authorized collaborators via a secure channel.
The data collection period spanned from February 2017 to
August 2017, during which we collected over 130 million
DNS queries from more than 455 thousand processes, as
shown in Table 1. This constitutes our benign dataset.

Data integrity. We need to ensure that all the captured
data are indeed benign. Even though all the end-host
machines are behind the corporate’s firewall and under
constant monitoring, we take additional steps to ensure
data integrity by cross-checking the executable binary
signatures (MD5, SHA-1, or SHA-256) of all collected
processes against VirusTotal Malware Database [59] and
performing additional manual inspection. As we deploy
data collection system to each end-host, there is a pos-
sibility that the attacker takes over the host and sends
forged reports. To counter this threat, our system cross-
checks its collected DNS activities with the log from local
DNS resolver to which the end-host reports.

Malware dataset. We collected malware samples
with unique signatures from three public sources: Virus-
Sign [58], VirusShare [57] and VXVault [60]. The time
span of the malware samples range from 2015 to 2019.
We set up a constrained environment using the Cuckoo
sandbox [17] and run each malware sample individually.
We follow common guidelines [32], [29], [18], [8] to
avoid triggering anti-VM techniques employed in various
malware. We deploy our data collection system inside the
sandbox to collect the malware data, the same way the
system collects the benign data from user machines. In
total, we ran over 20k malware samples and collected 8.3

Dataset Collected/Reported # DNS # Processes
Year Queries

Benign 2017 130,579,550 455,468

Malware 2015 3,264,235 5,736

Malware 2017 2,218,678 6,382

Malware 2018 533,477 1,550

Malware 2019 2,284,197 248,524

TABLE 1: Summary statistics of benign and malware datasets

million DNS queries from over 260k processes from the
sandbox, as shown in Table 1. Note that Table 1 shows
the statistics of each malware dataset by year.
Malware-injected processes. We first capture the
activities of benign processes that already exist in the
sandbox operations without running any malware. Then,
we run the malware in the sandbox, which might carry
out its malicious activities by injecting the malicious logic
into existing benign live processes [2]. Next, our goal is
to build a labeled dataset consisted of malware-injected
processes which are created from benign programs but
whose behaviors are controlled by injected malicious
logic. Thus, we filter out processes whose activities are
identical to the activities they already have before running
the malware. We also filter out malware processes which
perform all the activities themselves without injecting into
any benign processes, since it is not the focus of our study
(these processes are very easily identifiable from their
binary signatures). The resulting dataset includes 7840
malware-injected processes whose binaries have the same
signatures as their benign non-injected counterparts.

3.3. Data Preprocessing and Statistics

Our eventual goal is to create a Program-DNS profile
for each benign program based on the data from the
benign dataset, and use it to differentiate a benign process
from a malware-injected process which is initiated by
the same benign program. To this end, we perform two
preprocessing steps on our data:

e Group processes into programs. One program
(unique executable binary) can initiate many pro-
cesses. We group all processes of the same program
together and analyze their behaviors jointly. This en-
ables us to build a robust and comprehensive profile
for programs on different machines of different users.
After this grouping, we have 641 unique programs in
our benign dataset.

o Analyze domain name as opposed to full DNS query.
Due to the large number of distinct DNS queries, we
instead focus on the domain name, i.e., the second-
level domain. For instance, the domain name for
the query “mail.google.com” is “google.com”. For
special classes of queries, such as queries for the
local network, we assign three domain names to
represent them in our analysis: “INTERNAL” for all
internal DNS lookups, “ARPA” for all reverse DNS
lookups, and “OCSP” for all queries requesting or
checking digital certificates.

After the above preprocessing steps, we show the av-
erage number of distinct domains (in log scale) queried by
processes of each benign program in Figure 4. While 86%
of the programs only query at most 5 distinct domains

(%2} 104
[1
08 ‘©
€3
St
T g
0
0.6 gm
5 g2
hel
s}
4
0.4 N B B BN |
* = o
L EFEF NG T
Q2 8¢ 2 <2
02 g T 58 °
: k<] N s
IS s

—— All benign programs

0 10

2 4 6 8
Number of distinct domains (log scale) by each program

Figure 4: Average number of distinct domains queried by pro-
cesses of each program (log scale).

(and 36% of programs only query 1 distinct domain), the
CDF has a very long tail where very few programs query
a large number of distinct domains.

We show the top 10 programs in terms of number of
distinct domains on the bar chart, plotted on a log scale
in Figure 4. The top 3 programs — Chrome, Firefox, and
IExplore — clearly stand out. This highlights the difference
in the nature of programs: user-interactive programs such
as browsers and mail clients (e.g., , Outlook and Thun-
derbird) can have much higher heterogeneity in their DNS
behaviors. On the contrary, non user-interactive programs
could have relatively predictable behaviors. We will fur-
ther measure and quantify this difference in Section 4.

4. Profiling Program-DNS Behavior

Stealthy attacks may inject malware logic into benign
programs and request DNS queries on their behalf [2],
and/or establish C&C channels using only legitimate do-
main names [27], [26], [1]. Existing malware detection
techniques, such as checking program executable against
malware databases or analyzing DNS requests, may mis-
takenly label such malicious activities as benign.

In order to distinguish such stealthy attacks from be-
nign activities, we aim to develop a Program-DNS profile
for each benign program. Our intuition is that the pattern
of domains queried by benign processes of a program is
significantly different from the pattern of domains queried
by malware-injected processes of the same program, even
if all the queried domains are legitimate and benign.

To this end, we develop two groups of metrics to build
the Program-DNS profiles and distinguish between benign
processes and malware-injected processes: (1) Frequency
Ratios and Consistency Ratios (Section 4.1), and (2) Do-
main Types (Section 4.3).

4.1. Frequency Ratio and Consistency Ratio

Each benign program tends to frequently query certain
domains. For instance, as illustrated in Figure 2, processes
initiated by the Skype program usually query domains
like “skype.com” and “live.com”, whose registrants are
“Skype” and “Microsoft Corp”, located in countries “IE”
(Ireland) and “US” (United States). When we observe a
process initiated by the Skype program, we would expect
such behavior pattern. On the other hand, processes from

some benign programs may exhibit seemingly suspicious
activities such as querying certain advertisement servers.
Such behaviors should be captured and “expected” from
processes of those benign programs as well.

In order to quantify such “expected” behavior pattern
for each program, we analyze all the processes initiated by
each benign program in our benign dataset, and develop
frequency_ratio to represent how ‘“common” a certain
behavior is (e.g., querying a certain domain). Then, we de-
velop consistency_ratio to measure how much a process’
behavior is “consistent” with its expected behavior (e.g.,
querying domains that the majority of benign processes
from the same program have also queried). We will delve
into the details in the following sections.

4.1.1. Domain Consistency Ratio. We first define fre-
quency_ratio for a domain as the fraction of processes of
a given program that query the domain, as following:

__ #benign processes of pg querying d;
- total # benign processes of pg

Frequency_Ratiopg g,

where pg is a given benign program, and d; is a domain
that is queried by benign processes of program pg.

For instance, if 9 out of the 10 Ilegitimate
Skype processes query ‘“‘skype.com”, then the
Frequency_Ratioskype,skype.com 18 0.9. If no benign
process of pg has queried d;, then the ratio is 0. The
intuition behind this metric is to measure how “common”
a domain is to be queried by a benign process.

Next, we define domain_consistency_ratio for a given
process (either benign or malware-injected) as the average
of Frequency_Ratiopg g, for all its queried domain d;,
as following:

Frequency_Ratiopg,a,

[D]

d;eD

Domain_Consistency_Ratiop. =

where pc is the given process, pg is the benign program
from which pc is initiated, and D is the set of domains
queried by pc.

For instance, if Frequency_Ratiosiype,skype.com =
0.9, and a Skype process only queries “skype.com”, then
its Domain_Consistency_Ratio is 0.9. On the contrary,
if a Skype process only queries “example.com”, where
Frequency_Ratioskype,cxample.com = 0, then its Do-
main_Consistency_Ratio becomes 0, indicating that this
Skype process could be maliciously initiated by malware-
injected Skype program. The intuition behind this metric
is to measure how “consistent” the behavior of a process
is with the behavior of known benign processes of the
same program.

4.1.2. Registrant Consistency Ratio. We now extend the
analysis further to reflect the domain registration infor-
mation, namely, the domain registrant. This is designed
to accommodate potential variety or churn in the domain
queries. For instance, if half of the Skype processes
only query “skype.com” and the other half only query
“skype.net”, then the Frequency_Ratioskype,skype.com
and Frequency_Ratioskype,skype.net Will both become
0.5, which is relatively low. However, if we take a look at
the domain registrant rather than the actual domain name,
then we will see that both “skype.com” and “skype.net”
have the same registrant, which is “Skype”. Thus, includ-
ing the registrant information can further complement the
Frequency_Ratio and Consistency_Ratio analysis.

557

We define frequency_ratio for a domain registrant as
the fraction of processes of a given program that query at
least one domain registered by the registrant, as following:

benign processes of pg querying
domains registered by reg;
total # benign processes of pg

Frequency_Ratiopg reg, =

where pg is a given benign program, and reg; is the
domain registrant of at least one domain queried by benign
processes of program pg.

For instance, in the above case where half of the Skype
processes only query “skype.com” and the other half only
query “skype.net”, the Frequency_Ratiosiype, skype Will
be 1. This captures how “common” a domain registrant is
for domains queried by a benign process.

Next, we define registrant_consistency_ratio for a
given process (either benign or malware-injected). Sim-
ilar to the domain_consistency_ratio, it’s the average of
Frequency_Ratiopg reg(d,):

J, Frequency_Ratio
[D]

4e Py reg(d)

Registrant_Consistency_Ratiop.

Note that we use reg(d;) here to retrieve the registrant
for every domain queried by the process. If the registrant
hasn’t been seen from any other benign process, then
similar to the domain frequency case, the frequency_ratio
for this registrant would be 0. However, in some cases, we
may not be able to retrieve any registrant at all, e.g., the
domain registration information cannot be found, or the
domain is an “INTERNAL” query or reverse DNS lookup
(“ARPA”). In these cases, we assign F'requency_Ratio =
1 if the domain d; is a reserved domain (as defined in
Section 3.3), which does not have any registrant by its
nature; otherwise, we assign 0 if we are unable to retrieve
the domain registrant from the WHOIS server.

4.1.3. Country Consistency Ratio. In addition to
leveraging domain registrant information, we also take
into consideration the country where the domain reg-
istrant is located. Both the Frequency_Ratio and
Consistency_Ratio definitions for domain country are
very similar to the domain registrant case:

benign processes of pg querying

domains registered in country;
total # benign processes of pg

Frequency_Ratiopg, country, =

qu p Frequency_Ratioyg country(a;)
[D]

Country_Consistency_Ratiop.

We handle country(d;) the same way as reg(d;) in
case the country information of a domain cannot be found.

Note that we provide a set of possible definitions
for Frequency_Ratio and Consistency_Ratio above to
profile the Program-DNS behaviors, but there could be
other variations of the ratios that may potentially work.

4.2. Evaluation for Consistency Ratios

We now evaluate the three consistency ratios on our
data. To better demonstrate the difference between benign
and malware-injected processes, we first describe the five
groups of processes that we will evaluate.

« Non-interactive Benign: benign processes of non-
interactive programs in the benign dataset.

\ | # Programs | # Processes | Dataset |

Non-interactive Benign 636 446,871 Benign
Non-interactive Common 32 50,320 Benign
Non-interactive Malware 32 5,003 Malware

Interactive Benign 5 8,597 Benign
Interactive Malware 5 2,837 Malware

TABLE 2: Number of programs and processes in each group.

Non-interactive Common (subset of Non-interactive
Benign): benign processes of non-interactive pro-
grams in the benign dataset, where the same pro-
grams are injected by malware in the malware
dataset.

Non-interactive Malware: malicious processes of
non-interactive benign programs injected by malware
in the malware dataset.

Interactive Benign: benign processes of interactive
programs in the benign dataset.

Interactive Malware: malicious processes of inter-
active programs injected by malware in the malware
dataset.

Note that interactive programs include chrome.exe,
firefox.exe, iexplore.exe, outlook.exe,
thunderbird.exe, while non-interactive programs
include all the other programs. Table 2 summarizes the
number of programs and processes in each group.

Non-interactive programs. Figure 5 shows the results
for consistency ratios of Non-interactive Benign, Non-
interactive Common, and Non-interactive Malware pro-
cesses. Note that the frequency ratios of non-interactive
programs are established across all users.

Non-interactive Benign and Non-interactive Common
processes have very high domain consistency ratios, where
more than 85% of the processes have values > 0.96. How-
ever, Non-interactive Malware, which are the malware-
injected processes of the same 32 programs in Non-
interactive Common, show significantly lower domain
consistency ratios, where 90% of the processes have val-
ues < 0.2.

The registrant consistency ratio has very similar
pattern as the domain consistency ratio, where Non-
interactive Benign and Non-interactive Common processes
have very high registrant consistency ratios while Non-
interactive Malware processes have very low ratios. For
the country consistency ratio, the Non-interactive Malware
processes have relatively higher ratios compared to the
previous two ratios due to the much smaller set of coun-
tries. However, they are still significantly lower than the
ratios from the benign processes.

Interactive programs. The DNS behaviors of Interac-
tive programs, including browsers, are hard to model due
to their user-interactive nature. Previous work [54] tried
to mitigate this issue by only considering DNS activities
during the first 120 seconds of the process to avoid being
affected by user-initiated domains. However, the malware
can simply wait for 120 seconds until it starts its activities
to avoid being detected.

We propose a new way to profile DNS behaviors from
interactive programs utilizing the frequency ratios and
consistency ratios. Instead of building the ratios based on
all processes from all users for each program, we fine-
grain the ratios further to the user-level by considering all
processes from each user for each program. The intuition

558

is that each user generally has its own frequently-visited
domains, which can be very different from the frequently-
visited domains of another user. We can profile such DNS
behaviors on the program-level and user-level to capture
the pattern and use it to differentiate from the activities
by malware. Note that we consider all activities from
a process, instead of just the starting period. Figure 6
shows the results for the Interactive Benign and Interactive
Malware processes.

We can see that, although the domain consistency
ratio of Interactive Benign is lower than that of the non-
interactive processes, it still has a very clear difference
from the domain consistency ratio of Interactive Malware.
The malware-injected interactive processes have much
more erratic behaviors and vastly different queries.

For registrant consistency ratios and country consis-
tency ratios, both Interactive Benign and Interactive Mal-
ware have higher values compared to domain consistency
ratios due to the much smaller set of registrants and
countries. However, the clear difference between them
remains. Note that Interactive Benign have very high
country consistency ratios due to the geographic location
of our data collection environment, which is in the US.
Thus, while users may visit vastly different domains by
different registrants, the majority of the domains are still
registered in the US. On the contrary, Interactive Malware
are not affected by such user pattern, and thus still have
much lower country consistency ratios.

In Section 6.2, we will discuss more details on factors
that may hinder the attacker from injecting into interactive
programs.

Key Takeaway: Consistency ratios characterize the
“expected” DNS behavior of a benign program and
capture significant difference between benign and
malware-injected processes initiated from the same
benign program.

4.3. Domain Type Analysis

Consistency ratios in Section 4.1 are based on domain
information that has already been observed from past
benign processes. However, if a new process queries a
domain which has not been observed before, we need
further information to analyze this behavior. To this end,
we leverage program-level information to build domain
type analysis that serves as an indicator for whether a
domain should be “expected” — even if the domain has
not been observed before from past benign processes.

We classify the domains into three types:

e Reserved: this includes all domains that are “INTER-
NAL”, “ARPA”, “OCSP”, as defined in Section 3.
Owner: this includes domains that are considered
as “owned” by the same corporation/entity/organi-
zation that “owns” the program. We will provide
the detailed approaches to determine and compare
“ownership” in Section 4.3.1.

Other: all other domains that do not belong to the
above two types.

4.3.1. Identify “Owner” domains for a program. The
Owner type identifies domains registered by the orga-
nization who owns a program. For instance, “java.com”

~e- Benign
Common
—e— Malware

~e- Benign
Common i
—e— Malware

i 1
i 1
i 1
] ’
! 1

1

I

~e- Benign
I

-4 Common

—e— Malware

o s
Domain Consistency Ratio

o 3
Registrant Consistency Ratio

o W 0 o 13
Country Consistency Ratio

(a) Domain consistency ratio (b) Registrant consistency ratio (c) Country consistency ratio

Figure 5: Consistency Ratios for

Non-interactive Processes.

10{ =e= Benign
—=— Malware

0 ~e= Benign Lt o= Benign
oof &7 —=— Malware I S —=— Malware 00
Domain Consistency Ratio Registrant Consistency Ratio Country Consistency Ratio
(a) Domain consistency ratio (b) Registrant consistency ratio (c) Country consistency ratio

Figure 6: Consistency Ratios for Interactive Processes.

Domain Type Comparison bef

tween Benign and Malware

0.8

1.0 | I I I I

0.6
0.4

0.2 1

Percentage of Domain Type

0.0

Bcocwuwcus = SHB UL SI=«02T ScocaosbYESs |l Bcuncus =N>HBOE SI=- 020 Lcogcoose sy
BE S UER TR a2 R RS Loy |BE e RPTRNEEEEEr s 2588555588885
£ VNEIRTOGTSSEL U9 s C eS0Tl ET|E nEY RGO GRTS8EC LU 2g T s C o ESOITTREED
3 wa8 peasu2g9ty SagcxrewsRTEa (3 TEE HoasSyS2gEy 0eczxpVeweRTEe
EE2 LanmmESY £ ._gg 2 B £ EE2 230GREZF £ -—gg 2] €
g ® = 3 : g o = 4 :
Reserved d=== "="D e d===,"="p 2
G System User § — | — System User §
2 - 2
wher Programs Programs € Benign ° Malware Programs - Programs £
B Other g g

Figure 7: Domain type distribution for 32 common programs in benign and malware datasets.

and “oracle.com” are both Owner-type domains for
“jp2launcher.exe” program, which is part of Java frame-
work and therefore developed and signed by Oracle, which
is also the registrant of both domains. To infer this rela-
tionship, we need to extract “owner” information for both
the program and the domain.

“Owner” for program. We rely on three sources:
(1) program name, e.g., “nvidia.exe” is an indicator for
NVIDIA; (2) program signer extracted from the code sig-
nature of the program binary, if the program is signed; (3)
program path, e.g., the path “C:/Program Files/NVIDIA
Corporation/Update Core/NvProfileUpdater64.exe” indi-

559

cates that the program “NvProfileUpdater64.exe” belongs
to NVIDIA.

“Owner” for domain. We rely on two sources: (1)
domain name, e.g., “nvidia.com” indicates NVIDIA; (2)
domain registrant from WHOIS record.

Note that when extracting “owner” information, we
also strip away common strings seen in an organization’s
name, such as “Corporation”, “LLC”, etc., to ensure ac-
curate comparison results.

4.3.2. Domain type distribution for common pro-
grams. We analyze the domain type distributions for
Non-interactive Common and Non-interactive Malware

Dataset # Programs # Programs # Programs
Reserved Owner Other
Benign 213 (33.5%) | 203 (31.9%) 220 (34.6%)
Malware 359 (6.4%) 6 (0.1%) 5264 (93.5%)
TABLE 3: Domain Type Distributions for All Programs

processes from the 32 common programs, as defined in
Section 4.2. For each process, we compute the fraction of
each domain type (Reserved, Owner, Other) from all the
domains it queried. Then, we group processes of the same
program together, and compute the average fraction of
each domain type for all processes of a given program. For
comparison, we separate benign processes and malware-
injected processes of the same program.

Results. Figure 7 shows the domain type distributions
for both benign and malware-injected processes of the
32 common programs for direct comparison. The left
half shows the benign processes from the benign dataset,
and the right half shows the malware-injected processes
initiated by the same programs in the same order from
the malware dataset. We also separate programs into two
groups based on their origins: (1) system programs, which
typically come pre-installed with the Windows OS, and (2)
user programs, which are typically installed by the users.

At a first glance, we can clearly see that malware-
injected processes query a lot more Other domains (red
bars) than their benign counter-parts. Furthermore, benign
processes from system programs query less non-Reserved
domains (Owner + Other) than benign processes from
user-installed programs.

On the other hand, malware-injected processes from
system programs and user-install programs do not show a
significant difference from each other — they both query
a large number of Other domains.

One program, “wget.exe”, queries many Other do-
mains and does not exhibit a clear distinction between
benign and malware-injected processes. This is due to the
user-interactive nature of the program, where most of its
queries depend on user input.

4.3.3. Domain type distribution for all programs. We
also extend the analysis to all non-interactive benign and
malware (or malware-injected) programs. Table 3 shows
the number of programs corresponding to each domain
type distribution for both benign and malware programs.
We also show the detailed domain type distributions for
all non-interactive benign programs in Appendix A.

We can see that more than 65% of the benign programs
whose processes have only queried Reserved domains
and/or Owner domains. Such stable pattern is very desir-
able, as it facilitates the “prediction” regarding what types
of domains that a process from these programs may query.
On the contrary, only 6.5% of the malware programs have
the same pattern.

We also show the CDF for fractions of Other domain
type queried by all processes of non-interactive benign
and malware programs in Figure 8. We can see that
there is a clear difference between benign and malicious
processes in the fraction of Other domains, where the
malicious processes query significantly higher fraction of
Other domains.

560

=== Benign programs
—— Malware

0.0 02 06

04 08
Ratio of "Other" domain type

10

Figure 8: Fraction of Other domain type for all processes of
non-interactive programs.

Key Takeaway: Domain type analysis incorporates
program-level information to classify domains and
measures domain type distribution, which effectively
distinguishes benign processes and malware-injected
processes from the same program.

5. Detection Using Program-DNS Profile

We have shown in Section 4 that we can build
Program-DNS profile using consistency ratios and domain
types that capture significant differences between benign
and malware-injected processes, even when they are ini-
tiated from the same benign program where program-
and process-level information are indistinguishable. In this
section, we further demonstrate the effectiveness of the
Program-DNS profile by developing them into six new
features to train machine learning classifiers to detect
malware-injected processes on real-world datasets. We
also compare the detection results of our new features
with that of previously-proposed features.

5.1. Dataset and Features

To evaluate detection accuracy on malware-injected
processes, we focus on processes from the 32 common
programs that are present in both the benign dataset and
at least one of the malware datasets. Table 4 summaries
the data we will use for detection.

For each malware dataset, we identify the malware-
injected processes initiated by programs that are present
in the benign dataset; then, we identify the benign pro-
cesses initiated by the same programs from the benign
dataset. Column “# Process Samples” shows the number
of such benign and malware-injected processes we iden-
tify for each dataset.

We leverage six new features to detect malware-
injected processes based on the Program-DNS profile from
Section 4, as following:

1) Domain consistency ratio (Section 4.1.1)

2) Registrant consistency ratio (Section 4.1.2)

3) Country consistency ratio (Section 4.1.3)

4) Percentage of Reserved domain type (Section 4.3)

5) Percentage of Owner domain type (Section 4.3)

6) Percentage of Other domain type (Section 4.3)

We evaluate our new features from two aspects:

o Cross-validation on each dataset. To evaluate the
effectiveness of our features, we perform ten-fold
cross-validation on each of the 2015 — 2019 datasets.
Due to the imbalance in the number of benign

[Year | # Programs | Source [# Process Samples | Total [# Process Samples After SMOTE | Total |

2015 23 Benign 49,905 50,444 49,905 99,810
Malware 539 49,905

2017 16 Benign 6,013 7,260 6,013 12,026
Malware 1,247 6,013

2018 6 Benign 4,279 4,295 4,279 8,558
Malware 16 4,279

2019 3 Benign 4,231 7,432 4,231 8,462
Malware 3,201 4,231

TABLE 4: Detection dataset includes processes initiated by programs that are present across benign and malware datasets.

and malware-injected processes in some of the
datasets (e.g., 2015 dataset), we apply the SMOTE
technique [14] to oversample the minority class
(malware-injected) to the same number as the ma-
jority class (benign), shown in column “# Process
Samples After SMOTE”. We also compare the eval-
uation results using data with and without SMOTE.
Comparison with previously-proposed features. To
mimic real-world scenarios where training is done
using existing data and the trained model is used
to detect future attacks, we use the 2015 and 2017
datasets as training data, and the 2018 and 2019
datasets as testing data. Note that we do not apply
SMOTE oversampling for either the training or test-
ing phase. We also compare the detection results with
previously-proposed features.

5.2. Cross-Validation using New Features

We perform ten-fold cross-validation for each of the
2015 — 2019 datasets using Random Forest classifier. We
use Random Forest classifier as an example to demonstrate
the effectiveness of our new features, but other classifiers
can potentially work as well. We will compare results
between different classifiers in Section 5.3.

We evaluate true positive rate (TPR) and false positive
rate (FPR) for the classification, where TPR measures
the percentage of malicious processes being correctly
detected, and FPR measures the percentage of benign
processes being incorrectly marked as malicious. We use
the receiver operating characteristic (ROC) curve to show
the relationship between true positive and false positive,
and the precision-recall curve to show the relationship
between false positive and false negative.

True Positive Rate
Precision

2015 ROC (AUC = 0.9997) 2015 Precision-recall (AUC = 0.9995) |
== 2017 ROC (AUC = 0.9992) == 2017 Precision-recall (AUC = 0.9991)
=== 2018 ROC (AUC = 0.9999) === 2018 Precision-recall (AUC = 1.0000)
----- 2019 ROC (AUC = 0.9997) ===+ 2019 Precision-recall (AUC = 0.9992)

00175 00200 097 098
Recall

* % False positive Rate
Figure 9: ROC curve and Precision-Recall curve with ten-fold
cross validation using new features.

Results. Figure 9 shows the ROC curve and precision-
recall curve from ten-fold cross-validation using Random
Forest for each dataset after using SMOTE technique to
balance the benign and malicious samples. We can see

[Year [SMOTE [TPR [FPR [ROC AUC |
2015 No 98.5% 0.1% 0.9952
Yes 99.9% 0.08% 0.9997
2017 No 99.4% 0.05% 0.9938
Yes 99.7% 0.08% 0.9992
2018 No 100% 0.02% 0.9998
Yes 100%% | 0.01% 0.9999
2019 No 99.97% | 0.05% 0.9996
Yes 99.95% | 0.07% 0.9997

TABLE 5: TPR and FPR for each dataset with ten-fold cross
validation, with and without SMOTE oversampling.

that both ROC AUC and precision-recall AUC are > 0.99
for all four datasets. We also compare the results using
data with and without SMOTE oversampling in Table 5.
We include the true positive rate (TPR) and false positive
rate (FPR) at an “optimal” point (where the difference
between TPR and FPR is the largest). We can see that
there is very negligible difference between using data with
and without SMOTE oversampling. In addition, high TPR
(> 99%) can be achieved with very low FPR (< 0.1%)
for most of the datasets.

5.3. Comparison with Previous Works

In this section, we perform detection by using the 2015
& 2017 datasets as training data and the 2018 & 2019
datasets as testing data, withoutr SMOTE oversampling,
to reflect real-world scenario. We also compare detection
results with previously-proposed features.

Previous works have proposed various process-based
and network-based features for malware and malicious
DNS detection [7], [24], [13], [51], [38], [47], [6], [5],
[25]. Recently, Sivakorn et al. proposed new integrated
features that combine process-level and network-level in-
formation [54]. However, none of these previous works
target malware-injected processes, where the process-level
information can be indistinguishable (i.e., benign pro-
grams are invoked and perform all the DNS activities) and
benign domains are involved (e.g., benign web services
can be exploited to carry out attacks). The previously-
proposed features mostly consider process- and network-
level information separately, and the recently-proposed
integrated features [54] only consider each process inde-
pendently without capturing the Program-DNS behavior
across processes. In this section, we will perform detection
on malware-injected processes and compare the results
using two sets of features: (1) only previous-proposed
features (43 features in total), and (2) only our new
features (6 features in total).

561

5.3.1. Previously-proposed features. We extract 43 fea-
tures in total based on previous works [7], [54], [24], [38],
[13] from various feature categories. Recent work has also
combined these features to perform detection [54]. The
feature categories are as following:

1) Query Name and Domain Name: this type of features
directly measures the characteristics of DNS query
names, including the number of queries/domains,
number of distinct queries/domains, and query name
patterns. For instance, benign query names are likely
to have shorter and less random names compared
to malicious query names. The features have been
shown to be effective in detecting DGA-based mal-

ware [7] and have also been used in recent work [54].

We include 22 features from this category.

Timing information: this type of features includes do-

main registration duration (time between current time

and the domain’s initial registration time), domain
renewal duration (time between the domain’s updated
registration time and its expiration time), and domain

TTL (“Time To Live”, which specifies how long each

domain should be cached by a local DNS server).

These features have been shown to be very effective

in previous works [24], [38], [54] due to the fact

that malicious domains tend to be fresher and newer
because of frequent blocking, registered for a short
duration to lower the cost, and have a shorter TTL to
enable frequent change of IP addresses. We include

9 features from this category.

3) Registrant information: malware may query domains
registered by a large number of distinct registrants
due to its need to frequently change registrants to
avoid blocking. These features have been success-
fully used in previous works [5], [54]. We include 5
features from this category.

4) Location information: this mainly includes country
location where the domain is registered. Malicious
domains tend to be registered in certain countries and
may also frequently change locations. These features
have been effectively used in [13], [6], [54]. We
include 2 features from this category.

5) Process-based and Integrated Features: while the
above features focus on DNS queries, process-based
features such as the program signer (if any) have
also been found useful. Most recently, integrated
features that combine DNS-based and process-based
information have been proposed, where the program
signer and domain registrant of the domains queried
by the processes are compared for similarity [54]. We
include 5 features from this category.

2)

The full list of these 43 features can be found in
Appendix A. Note that we did not include features such
as the query resolve failure rate or features that depend on
the answer of the query. This is due to the potentially high
failure rate of DNS queries from older malware samples.
For instance, malicious domains built into malware may
be active for a very short period of time (e.g., couple of
weeks), and by the time we obtain and run the malware
sample, its malicious servers have been taken down and its
subsequent DNS queries would result in failure. Although
we have done our best to search for fresher malware
samples and run them as soon as possible, including such

562

features can heavily bias our detection result and does not
accurately represent the real scenario when the malware
is still active. Thus, we exclude such DNS answer-based
features from our detection. On the other hand, we do
include features that can be derived from the DNS query
itself and/or WHOIS server, e.g., domain registration in-
formation, which is relatively more stable and long lasting.

5.3.2. Evaluation Results. To mimic real-world scenar-
ios, we use the 2015 and 2017 datasets as training data for
the classifier, and then use the 2018 and 2019 datasets as
testing data. We do not perform any oversampling on the
data for either the training or testing phase. Our testing
data contains 8510 benign processes (negative) and 3217
malicious processes (positive). We compare the detection
performance between two sets of features: (1) only our
new features (6 features in total), and (2) only previously-
proposed features (43 features in total). We train the model
using Random Forest and K-Nearest Neighbors classifiers,
respectively, which were found to be the most effective
classifiers in previous works [38], [13], [6], [54].

Figure 10 shows the ROC curves and precision-recall
curves, where Figure 10a and 10b correspond to the Ran-
dom Forest classifier and Figure 10c and 10d correspond
to the KNN classifier. Note that the ROC curves show false
positive rates in the range of [0,0.1] and the precision-
recall curves display both precision and recall values
within [0.9,1]. We can see that our new features have
high AUC values > 0.99 and outperform the previously-
proposed features for both classifiers. The previously-
proposed features, while performing well with the Ran-
dom Forest classifier, show a drop in performance with
the KNN classifier. We also tried the SVM with linear
kernel classifier and the Logical Regression classifier, for
which our new features achieve ROC AUC of 0.99 and
0.96, respectively; on the contrary, previously-proposed
features only achieve AUC of 0.80 and 0.54, respectively.

In summary, our new features outperform the
previously-proposed features and maintain high accuracy
rate regardless of the classifier in use.

5.3.3. False Positive and False Negative analyses. Next,
we take a further look into the tradeoff between true
positive rate (TPR) and false positive rate (FPR), as well as
detailed false positive (FP) and false negative (FN) cases.
We will focus on detection results using the Random For-
est classifier, given that it is the best-performing classifier
for both new and previously-proposed features.

Results. Table 6 shows the results. The table does not
include all TPR/FPR points, but rather three representative
points for each features set: (1) 0% FPR point with the
corresponding TPR (highest value); (2) lowest non-zero
FPR point with the corresponding TPR (highest value);
(3) highest TPR point, where FPR < 1 (otherwise if
FPR = 1, then it’s trivial that TPR will also be 1). We
can see that at 0% FPR, our new features achieve 94.3%
TPR compared to 25.9% TPR with previously-proposed
features — this is 12X reduction on false negative rates.
Similarly, at 0.012% FPR, our new features achieve 99.5%
TPR compared to 37.4% TPR with previously-proposed
features. Finally, our new features can achieve 100%
TPR with only 0.15% FPR; on the contrary, previously-
proposed features can only achieve up to maximum 94.1%

True Positive Rate

o

Train 2015 and 2017, Test 2018 and 2019

Train 2015 and 2017, Test 2018 and 2019

Train 2015 and 2017, Test 2018 and 2019

Train 2015 and 2017, Test 2018 and 2019

0

000

/

New features (AUC = 0.9999)
Old features (AUC = 0.9700)

Precision

New features (AUC = 0.9999)
—-= 0ld features (AUC = 0.9554)

True Positive Rate

New features (AUC = 0.9980)
- 0ld features (AUC = 0.8013)

Precision

092

New features (AUC = 0.9961)
Old features (AUC = 0.7094)

002 008 010

o0 6
False Positive Rate

090 092 058

5 9%
Recall

100

000

002 008

o
False Positive Rate

010

090
050

092 038

094 %
Recall

100

(a) ROC curve with Random For-

est Classifier. Random Forest Classifier.

(b) Precision-recall curve with

(c) ROC curve with KNN Classi-
fier.

(d) Precision-recall curve with
KNN Classifier.

Figure 10: Comparison between our new features and previously-proposed features using Random Forest and K-Nearest Neighbors

classifiers, with 2015 & 2017 datasets as training data and 2018 & 2019 datasets as testing data.

[Features [TPR [FPR | FP Programs \ FN Programs |
94.3% 0% - svchost(182)
New 99.5% | 0.012% ping(1) svchost(16)
100% | 0.15% ping(1), svchost(12) -
Previously | 25.9% 0% - wscript(1), notepad(3), ping(6), svchost(2375)
Proposed 37.4% | 0.012% main(1) notepad(2), ping(6), svchost(2006)
94.1% 0.33% | ping(1), notepad(2), explorer(2), main(3), svchost(20) svchost(190)

TABLE 6: Comparison of TPR and FPR between new and previously-proposed features. FP programs are programs whose processes
are misclassified as malicious, where the number inside the parentheses indicates the number of misclassified processes of the
program. Similarly, FN programs are programs whose processes are misclassified as benign.

TPR, indicating that the remaining 5.9% of the malware-
injected processes completely fail to be detected using
only previously-proposed features.

Deeper look into the processes. We can see from
Table 6 that 5.9% of the malicious processes (190 in total,
all svchost processes) are indistinguishable from benign
processes using only previously-proposed features, while
all of them can be successfully detected by our new
features. We take a deeper look into the queries from
these processes. We found that all the processes query
seemingly-benign domains. For instance, 64 processes
query various blog posting websites, and the following is
an example of the queries sent by an svchost process:
1.bp.blogspot.com, 2.bp.blogspot.com, blogblog.com,
img1.blogblog.com, pagead?2.googlesyndication.com,
www.blogblog.com, www.blogger.com, www.facebook.com
While the blog posting sites are legitimate themselves,
they are known to be vulnerable to malware infection,
resulting in malicious content hosted on the site. However,
from the DNS-based point of view and the process-
based point of view, the activities are indistinguishable
from benign activities, which is why these stealthy
malware-injected processes fail to be detected by using
previously-proposed features. However, with our new
Program-DNS profile-based features, we can detect
when the process’ behavior deviates from its “expected”
behavior — in this case, svchost processes are not expected
to query blog positing domains and thus these abnormal
activities are successfully flagged by our new features.

Key Takeaway: Our new features achieve 94.3%
True Positive Rate with 0% False Positive Rate,
compared to 259% True Positive Rate with
previously-proposed features. Our new features can
also successfully detect all malware-injected pro-
cesses with only 0.15% False Positives Rate, while
previously-proposed features completely fail to de-
tect 5.9% of malware-injected processes.

563

5.4. Case Study on POSHSPY

In this section, we experiment with a stealthy strain of
malware — POSHSPY. As described in Sec 2, POSHSPY
employs a Fileless scheme to hide its backdoor logic as
one of WMIC events which contains PowerShell payload.
To evade network monitoring, the malware uses Meek
Tor plug-in that connects to a Tor entry relay which is
designated as one of Google Cloud Services and would
eventually lead to C&C.

To perform the experiment, we downloaded the pay-
load of POSHSPY [26]. We launched the malware from an
isolated environment and captured the DNS activities from
the environment. We configured the malware to connect
to domains including google.com and dropbox.com, which
were used in previous real-world attacks.

From the captured data, we observed that a powershell
process was injected by the malware and sending queries
on the malware’s behalf, querying dropbox.com four times
and google.com two times. We then used the trained
model in Section 5.3 with 2015 and 2017 datasets to per-
form detection. Our new features successfully detected the
malware-injected powershell process, while previously-
proposed features failed due to the seemingly-benign pro-
cess information and DNS activities.

6. Related Work and Discussion

In this section, we review existing DNS and malware
detection systems, including network-based solutions,
host-based solutions, and a recently-proposed process-
level detection system that combines both network- and
process-level information. Then, we describe two strains
of malware that inject malicious logic to benign programs
and establish C&C channels through connections to legiti-
mate domains. Finally, we discuss challenges on injecting
malware logic to interactive programs, such as browsers.

6.1. Existing Detection Systems

Network-based DNS detection systems. Monitoring
and analyzing the DNS traffic of Internet hosts is the
first line of defense against fast-flux networks, bots, DGA
(Domain Generation Algorithms) domains and spammers.
Numerous works [61], [5], [13], [6], [71, [15], [48], [49]
have been proposed to analyze DNS activities on DNS
servers at different levels of DNS hierarchies, aiming to
detect malicious domain names that are associated with
various attacks. A survey [9] provided an overview of the
state-of-the-art network-based detection systems (includ-
ing other types of network traffic, e.g., packet, flow size).
However, the key difference between these approaches and
ours is that they all focus on detecting malicious domains.
This will not be effective against stealthy attacks where
legitimate and benign web services and domains are being
leveraged by attackers to carry out attacks.

Host-based detection systems. Host-based detection

systems aim to detect malicious programs and processes,
as opposed to malicious domain names. Numerous works
have proposed to detect malware through static analy-
sis [16], [55] via disassembly or reverse engineering.
However, malware may very likely create instances that
can avoid being detected by these techniques [46], [19],
[64]. Due to the limitation of static analysis, dynamic
analysis techniques have been proposed, where the detec-
tion systems are built from observing the malware behav-
iors while the malware is being executed (e.g., function
call, information flow tracking [63]). Studying malware
behaviors under a restricted environment have also been
proposed in [11], [56], [53], [62].
While advanced host-based detection techniques can also
be effective, they are orthogonal to our approach and
generally involve extensive system logging. We aim to
provide a more light-weight, but effective approach that
collects fewer data fields and focuses on Program-DNS
behaviors. Our approach and host-based detection tech-
niques can be complementary to each other.

Integrated network-based and host-based detec-
tion systems. Recently, Sivakorn et al. [54] proposed
PDNS, a process-level detection system that combines
network-based features (e.g., DNS query name and an-
swer) with process-based features (e.g., code signing)
to perform detection at the process-level. The system
enriches the context of monitoring data, and proposes new
integrated features by combining domain information and
program information. However, this system analyzes each
process independently, without developing a fine-grained
Program-DNS profile at the program level by analyzing
processes of the same program jointly. As a result, the
system is not effective at detecting stealthy attacks where
DNS queries are delegated via legitimate programs using
cross-process injection techniques [2], [43].

6.2. Interactive Program as a Target for Injection

In Section 4, we built Program-DNS profile for inter-
active programs, including browsers and mail clients. Al-
though our metrics can still distinguish malware-injected
processes from benign processes for interactive programs,
the DNS behaviors of these programs are intrinsically
harder to model due to their user-interactive nature. Thus,

564

interactive programs may seem to be perfect targets for
malware injection to increase stealthiness of the attack.

However, the attacker also needs to take risks in choos-
ing highly interactive programs as its injection target. The
attacker cannot have a stable expectation for the existence
or lifetime for its injection target and any irregular behav-
ior caused by malicious logic is more noticeable to the
user. For stealthiness and persistence, the attacker may
prefer to choose long-running background processes as
its target [42].

Yet, there exist injection attacks that specifically tar-
gets browser programs [2], aiming to steal sensitive user
information (e.g., passwords, credit card numbers) stored
in browser’s memory space. To respond, Browser vendors
(Google Chrome and Mozilla Firefox) have come up with
in-browser defense measure that block injection attempts
by other processes [3], [4].

6.3. Generalizability and Limitation

Our Program-DNS profiling approach is generally ap-
plicable to different types of environments. However, the
resulting profiles could be different. Thus, we should
rebuild the profile and retrain the model, instead of di-
rectly applying the trained model from our corporate
environment to another environment, such as home users
or data centers. Alternatively, we may employ domain
adaptation techniques to transfer our trained model to
another environment.

While our system is not specifically tailored against
an adaptive attacker, it does raise the costs for adaptive
attackers targeting our system. For example, if the attack-
ers want to evade detection on injection into programs
with highly consistent behaviors, e.g., never querying
“nonowner” domains, they have to either move the C&C
server to the “expected” domains, which are usually a
limited set of domains and often high-profile domains such
as microsoft.com, or choose other programs to inject.

7. Conclusion

In this paper, we proposed novel metrics to build
fine-grained Program-DNS profile for benign programs.
We deployed a data collection system on 126 enterprise
end-host machines and collected over 130 million DNS
requests along with the program- and process- level infor-
mation. We showed that malware-injected processes and
benign processes from the same program have significant
difference in their DNS behavior, even when program-
and process-level information are indistinguishable and
the queried domains are legitimate and benign. We demon-
strated the effectiveness of such Program-DNS profile
in detecting malware-injected processes by proposing six
new features that are based on Program-DNS profiles.
By evaluating across malware datasets ranging from 2015
to 2019, we showed that our new features are more ef-
fective at detecting malware-injected processes compared
to previously-proposed features. Overall, our work sheds
light on leveraging program-level behavior to detect mal-
ware injection, and inspires future ideas for defending
against increasingly complex malware.

References

[1] Attacks Leveraging Web Services. https://attack.mitre.org/
techniques/T1102/.

[2] Attacks with Process Injection. https://attack.mitre.org/wiki/
Technique/T1055.

[3] (2019) Firefox will block DLL Injections. https://www.ghacks.net/
2019/01/21/firefox-will-block-dll-injections/.

[4] (2019) Google Chrome 72’s Code Injection
Blocking Detailed. https://news.softpedia.com/news/

[51

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

google-chrome-72-s-code-injection-blocking-detailed-524759.
shtml.

M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster,
“Building a Dynamic Reputation System for DNS,” in Proceedings
of the USENIX Security Symposium, 2010, pp. 273-290.

M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou, II, and
D. Dagon, “Detecting Malware Domains at the Upper DNS Hier-
archy,” in Proceedings of the USENIX Security Symposium, 2011,
pp. 1-16.

M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-
Nimeh, W. Lee, and D. Dagon, “From Throw-away Traffic to Bots:
Detecting the Rise of DGA-based Malware,” in Proceedings of the
USENIX Security Symposium, 2012, pp. 24-24.

Y. Assor and A. Slotky. (2016) Anti-VM and Anti-
Sandbox Explained — CYBERBIT. https://www.cyberbit.com/
anti-vm-and-anti-sandbox-explained/.

K. Bartos, M. Sofka, and V. Franc, “Optimized Invariant Represen-
tation of Network Traffic for Detecting Unseen Malware Variants,”
in Proceedings of the USENIX Security Symposium, 2016, pp. 807—
822.

A. Bates, D. J. Tian, K. R. Butler, and T. Moyer, “Trustworthy
whole-system provenance for the linux kernel,” in USENIX Security
Symposium), 2015.

U. Bayer, C. Kruegel, and E. Kirda, TTAnalyze: A Tool for Ana-
lyzing Malware, 2006.

S. B. Bhatkar, S. Nanda, and J. S. Wilhelm, “Techniques for be-
havior based malware analysis,” Oct. 8 2013, uS Patent 8,555,385.

L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi, “EXPOSURE:
Finding Malicious Domains Using Passive DNS Analysis,” in
Proceedings of the Network and Distributed System Security Sym-
posium, 2011, pp. 14:1-14:28.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic Minority Over-sampling Technique,” Journal
of artificial intelligence research, vol. 16, pp. 321-357, 2002.

H. Choi, H. Lee, H. Lee, and H. Kim, “Botnet Detection by
Monitoring Group Activities in DNS Traffic,” in Computer and
Information Technology, 2007. CIT 2007. 7th IEEE International
Conference on, 2007, pp. 715-720.

M. Christodorescu and S. Jha, “Static Analysis of Executables
to Detect Malicious Patterns,” WISCONSIN UNIV-MADISON
DEPT OF COMPUTER SCIENCES, Tech. Rep., 2006.

Cuckoo Sandbox. https://cuckoosandbox.org/.

D. Desai. (2016) Malicious Documents leveraging new Anti-VM
& Anti-Sandbox techniques — ZScaler. http://bit.ly/2ZGRNWvVA.

M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A Survey on Au-
tomated Dynamic Malware-analysis Techniques and Tools,” ACM
computing surveys (CSUR), vol. 44, no. 2, p. 6, 2012.

Empire. Empire powershell post-exploitation agent. http://www.
powershellempire.com.

Endgame. ten process injection techniques. https://bit.ly/32R7¢D7.

ESET. (2017) Gazing at Gazer. https://www.welivesecurity.com/
wp-content/uploads/2017/08/eset-gazer.pdf.

ESET. (2018) Diplomats in Eastern Europe bitten by a Turla
mosquito. https://www.welivesecurity.com/wp-content/uploads/
2018/01/ESET_Turla_Mosquito.pdf.

565

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]
[46]

M. Felegyhazi, C. Kreibich, and V. Paxson, “On the Potential of
Proactive Domain Blacklisting.” in Proceedings of the USENIX
Conference on Large-scale Exploits and Emergent Threats: Bot-
nets, Spyware, Worms, and More, 2010, pp. 6-6.

I. Fette, N. Sadeh, and A. Tomasic, “Learning to Detect Phishing
Emails,” in Proceedings of the International Conference on World
Wide Web, 2007, pp. 649-656.

FireEye. (2015, July) Dissecting One of APT29’s Fileless WMI
and PowerShell Backdoors (POSHSPY). https://www.fireeye.com/
blog/threat-research/2017/03/dissecting_one_ofap.html.

FireEye. (2015, July) HammerToss: Stealthy Tactics Define
a Russian Cyber Threat Group. https://www2.fireeye.com/rs/
848-DID-242/images/rpt-apt29-hammertoss.pdf.

Forbes. (2019) Flying Under The Radar:
Biggest ~Malware Threats Hiding In Plain
https://www.forbes.com/sites/forbestechcouncil/2019/05/06/

The
Sight.

flying-under-the-radar-the-biggest-malware-threats- hiding-in-plain-sight/

#12c6f0eb19bd.

R. H. Frederic Besler, Carsten Willems. (2017) Countering In-
novative Sandbox Evasion Techniques Used by Malware. http:
//bit.ly/2GRO2TY.

P. Gao, X. Xiao, D. Li, Z. Li, K. Jee, Z. Wu, C. H. Kim, S. R.
Kulkarni, and P. Mittal, “SAQL: A Stream-based Query System
for Real-Time Abnormal System Behavior Detection,” in USENIX
Security Symposium), 2018.

B. Hawkins, “Case study: The home depot data breach,” SANS
Institute, Tech. Rep., 2015.

D. Keragala. (2016) Detecting Malware and Sandbox Evasion
Techniques. http://bit.ly/2uSHTkk.

S. T. King and P. M. Chen, “Backtracking intrusions,” in ACM
Symposium on Operating Systems Principles (SOSP), 2003.

S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen, “Enriching
Intrusion Alerts Through Multi-Host Causality.” in NDSS, 2005.

K. H. Lee, X. Zhang, and D. Xu, “High Accuracy Attack Prove-
nance via Binary-based Execution Partition.” in NDSS, 2013.

K. H. Lee, X. Zhang, and D. Xu, “LogGC: garbage collecting audit
log,” in ACM SIGSAC conference on Computer & communications
security (CCS), 2013.

Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal,
“Towards a Timely Causality Analysis for Enterprise Security.” in
NDSS, 2018.

J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond
Blacklists: Learning to Detect Malicious Web Sites from Suspi-
cious URLS,” in Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2009, pp.
1245-1254.

S. Ma, K. H. Lee, C. H. Kim, J. Rhee, X. Zhang, and D. Xu, “Ac-
curate, low cost and instrumentation-free security audit logging for
windows,” in Annual Computer Security Applications Conference
(ACSAC), 2015.

S. Ma, X. Zhang, and D. Xu, “Protracer: Towards Practical Prove-
nance Tracing by Alternating Between Logging and Tainting.” in
NDSS, 2016.

McAfee. What is Fileless Malware? https://www.mcafee.
com/enterprise/en-us/security-awareness/ransomware/
what-is-fileless-malware.html.

Microsoft. Detecting stealthier cross-process injection techniques
with Windows Defender ATP: Process hollowing and atom bomb-
ing. https://bit.ly/2NQLOIs.

Microsoft. Uncovering cross-process injection with Windows De-
fender ATP. https://www.microsoft.com/security/blog/2017/03/08/
uncovering-cross-process-injection- with-windows-defender-atp/.

MITRE. Kazuar. https://attack.mitre.org/software/S0265/.
MITRE. Turla. https://attack.mitre.org/groups/G0010/.

A. Moser, C. Kruegel, and E. Kirda, “Limits of Static Analysis for
Malware Detection,” in Computer security applications conference,
2007. ACSAC 2007. Twenty-third annual, 2007, pp. 421-430.

[47] T. Nelms, R. Perdisci, M. Antonakakis, and M. Ahamad, “WebWit- [Feature Type | Feature Name
ness: Investigating, Categorizing, and Mitigating Malware Down- Number of domains
load Paths,” in Proceedings of the USENIX Security Symposium, N Number of distinct domains
2015, . 1025-1040. umber of domains (normalized)

Number of distinct domains (normalized)
[48] R. Perdisci, I. Corona, D. Dagon, and W. Lee, “Detecting Malicious

Ratio of distinct domains
Average domain name entropy

Flux Service Networks Through Passive Analysis of Recursive Median domain name entropy
DNS Traces,” in Proceeding of the Annual Computer Security SD of domain name entropy
o) _ Query Name Average domain length
Applications Conference, 2009, pp. 311-320. and Median domain length
[49] D. Plohmann, K. Yakdan, M. Klatt, J. Bader, and E. Gerhards- Domain Name Sgu“’]:bi‘r’";?“‘ul:r‘;;é:h
Pad@lla, “A Compr.ehensivc Measurement Study of Dorpain Gen- Number of disti?nct quéries
erating Malware,” in Proceedings of the USENIX Security Sympo- Number of queries (normalized)
sium, 2016, pp. 263-278. Number of distinct queries (normalized)
Ratio of distinct queries
[50] T. Radichel, “Case study: Critical controls that could have pre- Average query name entropy
vented target breach,” SANS Institute, Tech. Rep., 2013. Median query name entropy
of query name entropy
[51] SeatGeek. FuzzyWuzzy: Fuzzy String Matching in Python. http: Average query length
//bit.1v/1hfXsIB Median query length
1t.ly, sibB. SD of query length
[52] Security Boulevard. (2019) Fileless Malware on the Rise. https: ?X:fl?f: gg;]“;‘: TTTFE
/Isecurityboulevard.com/2019/10/fileless- malware-on- the-rise/. SD of domain TTL
. . . w . Average registered duration
[53] M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Automatic Reverse Timing Info Median registered duration
Engineering of Malware Emulators,” in Proceedings of the IEEE SD of registered duration

Average renewed duration
Median renewed duration

Symposium on Security and Privacy, 2009, pp. 94-109.

[54] S. Sivakorn, K. Jee, Y. Sun, L. Kort-Parn, Z. Li, C. Lumezanu, SD of renewed duration
7. Wu. L-A. T and D. Li. “C teri alicious e Number of registrants
. u, L.-A. lang, dq D 1., ountering maliClous processes Number of distinct registrants
with process-dns association.” in NDSS, 2019. Registrant Info Number of registrants (normalized)
. Number of distinct registrants (normalized)
[55] D. Song, D. Brumley, H. Yin, J. Caballero, 1. Jager, M. G. Kang, Ratio of distinct registrants
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: Location Info Number of distinct countries
A New Approach to Computer Security via Binary Analysis,” in WR:HI(;IOf distinct countries.
. R . ether program is signe
International Confere”ce on Infgrmatwn Systems Securl[}’ 2008, Process-based Similarity score, full string (signer v.s. registrant, setup time)
pp- 1-25. and Similarity score, partial string (signer v.s. registrant, setup time)
. . . Integrated Features Similarity score, full string (signer v.s. registrant, all time)
[56] A. Vasudevan and R. Yerraballi, “Cobra: Fme-gramed Malware Similarity score, partial string (signer v.s. registrant, all time)
Analysis Using Stealth Localized-executions,” in Proceedings of K K .
the IEEE Symposium on Security and Privacy, 2006, pp. 15-pp. TABLE 7: List of 43 previously-proposed features of various
types.

[57] VirusShare. https://virusshare.com/.
[58] VirusSign. http://www.virussign.com/.
[59] VirusTotal. https://www.virustotal.com.
[60] VXVault. http://vxvault.net/.

[61] F. Weimer, “Passive DNS Replication,” FIRST Conference on
Computer Security Incident, 2005.

[62] C. Willems, T. Holz, and F. Freiling, “Toward Automated Dynamic
Malware Analysis Using CWSandbox,” IEEE Security & Privacy,
vol. 5, no. 2, 2007.

[63] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
Capturing System-wide Information Flow for Malware Detection
and Analysis,” in Proceedings of the 14th ACM conference on
Computer and communications security, 2007, pp. 116-127.

[64] 1. You and K. Yim, “Malware Obfuscation Techniques: A Brief
Survey,” in Proceedings of International Conference on Broadband,
Wireless Computing, Communication and Applications, 2010, pp.
297-300.

Appendix

Table 7 lists the 43 features that we extract from
previous works.

We also show the complete domain type distribution
for all 636 non-browser benign programs in our dataset
in the following.

566

ntrtscan
0326000

adobeararl'lurm ‘a)teer

[Reserved
0 Owner
mmm Other

dellcllents stemupéatg
phoxclient 28
v ataco lector
comigre-vmx
ciscowebexstart

B hlnge

B
deskun f

h t 4
-

afee
ddvrulesprocessor

W|n2|pG£l.t
|smag_sn

pIu&;ln -container
be updater
0 148

Percentage of Domain Type

cltnxolm1 nga%n T'Pé?'

XI reader
nup
is
)tl ier

dell |ver9§e I’VFCE
mediacreationtool
tortoiseproc

1

ismsery

delldock

. vpnagent

googlepinyindaemon
edr|v

r ser\llce

Im:
elements 10

pyc harm-prr?foessﬁzlu P}Xinltsblﬁ
nisicy

ey

vsJ)rofesslurf]tal
wieseagaanalyzer
tserw:s

t p3

é‘é‘i’&}éﬁé’&

goxcflent 24
B oxclient—22
prlntlsulatlo h‘ost
dropboxchentczi
installerwrapperservice

paint
i t n

staller
3 dh end
icloudservices
myheadsetupdater
bsvcprocessor
daemonu
msmpen

mccs seﬁl’lceﬁgst
vs1 kh3165(56
nvconta?ner
blend

update
icloudpelutos
9526000

ﬁashpLeyng%pA.)au ga mstall

rcui
xidiscove
8878aad3-el4a-46ff-b97c-f feecdcbdbﬁa
gopro r'!l:er
readerdc_en ra crd inst: aal
supportassfstiaincher
synerg ¥
ruqu

dlagtrackrunnﬁi

déﬁﬁ‘;{%‘ﬁﬂ Wiz

scr
mlcrnscft

github dasktox
Jav
applechromelgav

MSCOrsVW
applephotostreams
nvproflleud)dat rﬁd
rserve

f plugin_25_0_ Blugi'"

flashutil32_24_0 oaﬁz%e&ec?g

acmadmijn
main

Ioug
sou rcetraeupd ate

dro) |ent 20
d31b543a-8239-4438-b4a6-! 55 234569
cemonitor

googledrlvesyng

rd

acron¥32

helggane

rter
dbrupdaée

tmllsten

t
mupgagent -

0.2

0.6

567

Percentage of Domain Type

[Reserved 0354000
N Owner acrotray
s Other nimxsoffline
ﬂashplayerupdatesetr;llllegr
flashplayerplugin_26_0_0_137

udio
lucoms~1

archite
db browser for sculte

dataconnectmnforfsmloﬂ

it

ijIal?nc'ﬁer

msmone!
unedrivestandalu[\eupgate‘\:

. : _;avg
registrationwizard
imeutil

nxclient
logtransport2
eJeans

flashplayer26ax_ma_install

ervice
e senl:e

ate gno tifiel
a772b833- TEhb 49c0-8122- 9dfd034be 4b

motoroladevicemanagerupdate

nvstreamuseragent

dellcom maﬁwupuuate

shell

readerdc_en xa |ns all
Sync-wo

rker

_wsceaa

vs14-] kb31513r8

ﬁashutll32_2§w9r0]‘71%22 er

adwcleaner 6
mstol

e cordin mana er
gfexperiericeservic

nldaquremoteswnce

lnkscgpe

sqr tebrowser

dropboxchent 24
mp

100g aw analytic engme
m Yoo dssync

escri t full
flashutil32_25_0_(9’%48 p

rriup ate

meIauncf?\er
ats-

m
softwareupg ate

offi cec?r(éllent

ﬁashplagErZSJ(a |r]$ta
g

h
PEhEd

exe

clickonce bootst[a

teamviewer_s

1dsvc
lntHltup ateservice
photoshop ‘elements 12
nlsepllnk

a

. 03 10_8
nlupdateservlce
|nzrp32
0362010
su ortasslsta nt
jre-! Eupﬁl wmgowgs.aau
come: rtptra
apnmcp
wermgr
postgr S
ful
nvtelemetrycuntamer
ins allerevents
foxitreaderupda te]{

U
uclient

lient 9001
notepad++

rialre

uthse
malntenancesemc
wdbackuj E

dronb mlt:sat ozre
ropboxclie!
P aneg

i ..anméﬂ'a”#‘t[%]

boxchent 29
I3 1

ﬂashplayerplugl# 26 00

) isse

r llerc nsole

557505de-73ce-AZM-ahbu-ceacZeOSaeDB
u|

.vma%

emaker
microsoft
0.0

0.2

0.4

0.6

08

10

[Reserved
" Owner shsct
- ccsvchs|
Othier Ecwr\loaderz
dropboxclient 26
Ikcitd]
screenconnect
technicianclient
grrsw00
dvinst
sourcetree

modulecore e

tra ye{ él gentg

screenpre
powershel
dropboxcdlent 27
watadminsvc
msdynamlcssl

2mupdate
g getup
explorer

g2meom
Viewer
securityscan, releace
0140000
service
pﬁ eser~1
e

calibre
ernote

Percentage of Domain Type

eve
nlwebservlcecgnélner
xterm

pattelrunner
googletoolbaruser 32
gca

p C |ent

w32tm

. n

|nstalslll

Isass

vmware-vmrc

sgdownload

. rufus-2

dl’OpbOXCh?{]t 9019

authnmansvr
onedriveset]

ntirs

g ublime text

a owebinar cpaner
ﬁashutll32 6 0 0 131 epper

andiskse Ess in

sys«:lciagn oSt

consent
un:

chrumere&hoverx

as| ut||32 22 0 0 209 pepper
2shtl32-56-0-0- _137;EeBE_?r
5

ninite
rpdsvc

jre-8uld4d

e here
flashplayerplugin_24 0 0 194

skypebi rowglgr?mst
OrORR

4 Enartlsetttln
ropboxclient
bcmdeviceandtas tatus ervi
iecontrolserver
ﬂashplayerplugln 24 0.0 221

qcnotl ier
sogots -ommar
netSession_win

~vpi

ine
reportviewer
sgpicfacetool
remoting_host
“viber
toaster
lient

Xcl
‘épimo dt
texmngg
ba"l‘)?ea u

hit e\t/emotenw
architect manager
?mstesa gnt

035 #1)0 0
searchprotocolhost

flashutil32_25_0_0_127 el
ashuti epper
R i

vimn

0303000

clyiew
mcsvhost

ﬂashutilBZ_ZZ_O_O_lSTpg&POpnﬂ'

msnmsgr
officeclicktorun
0395000

032700”8
selaur\cher

gchpse -

02

04

[Reserved
" Owner
B Other

roi
appupﬂater
ec

ssh
bomgarscc
alplay
mcchsvc
msosync

.. Jusche
davmailservice64

windil
teamviewer
hfs

Percentage of Domain Type

jre-8ul4l-wind

realconverter
_seaport
ishelper

_niroco
dropboxclient_23
mrt

devic yobjectprovider
explzh

sky964!
systemwebserver
ua
nvstreamnetwnrkser\nce
updates notifier
vsupdate | kb3022398

mol
msdwewerchentiz
1puninst

vmware- cunverter -a
sagedownloadmanagervS
dltor

nv_tmrep
wmiprvse

.skyge37

Kdbeats
activate maﬁgg

. ladmin
flashplayerplugin_25 0 0 127
L~ Shmp

wmprph
agsservice
xmin

recéiver
veredist_x86
apcupdates

in_mobax
dropboxcnent 30
, pefest

{e—&ulil -
photoshopelementseditor
3 vmplayer
maltlmes-realplager
toolbox

mshta
putty
systra

" nldlSKﬁSV\E
ugin_hos
plug d‘ St

h
s0gou. in in a
o ‘pnx\lfmﬂe
0340000
omniaddrservice
ninite flash ie gimp java notepad |nsta||er

0325000
sogou_pinyin_mini_ 6996

googlemolbarmanager Bh0451?9334dg7cg
IC engine

3b338df3- Bea7 41?{5973?l lyaacol 9edc

flashutil32_26_0_0 126%J)per

th ok
mat

e
mohaxterm}ersonal 9

85f392bc-6e9d-468e- bdlB d77d145¥a777
dia web hel I
setupl nst
o
microso
sgsetc

r_wtraﬁ
ﬁashplayerZSpp_xa instal
|e|owu |I

logitechupdate
mingw-get-: setup

appllcatlonwebservar
winvncd

pycharm- communlty 2017
trayti |pagent

dfsrs
dphostw
wlisettings
mfeavsvc

dropboxclien? 22

PP
revu

rescuefime

. vncserver
git-remote-ftp
nimax
0362020
dithost

yserver

mikt

ks
notepad
Vs_communi

~ufus-.
sgimeguard
0.0

568

0.4

0.6

10

