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ABSTRACT
Diagnosis of performance problems is an essential part of
software development and maintenance. This is in partic-
ular a challenging problem to be solved in the production
environment where only program binaries are available with
limited or zero knowledge of the source code. This problem
is compounded by the integration with a significant number
of third-party software in most large-scale applications. Ex-
isting approaches either require source code to embed man-
ually constructed logic to identify performance problems or
support a limited scope of applications with prior manual
analysis. This paper proposes an automated approach to
analyze application binaries and instrument the binary code
transparently to inject and apply performance assertions on
application transactions. Our evaluation with a set of large-
scale application binaries without access to source code dis-
covered 10 publicly known real world performance bugs au-
tomatically and shows that PerfGuard introduces very low
overhead (less than 3% on Apache and MySQL server) to
production systems.

CCS Concepts
•Software and its engineering → Software perfor-
mance; Software testing and debugging; Software
post-development issues;

Keywords
Performance diagnosis, post-development testing

1. INTRODUCTION
Diagnosis and troubleshooting of performance problems is

an essential part of software development and maintenance.
Traditionally, various performance tools [22, 14, 36, 21, 13,
34] have been extensively used by developers during the de-
velopment and testing stages in order to identify inefficient
code and prevent performance problems. However, unlike
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other software issues, preventing performance problems be-
fore software distribution is challenging [42] for the following
reasons. First, modern software has complex dependency
on many components developed by multiple parties. For ex-
ample, an application may have dependency on third-party
libraries as well as the system libraries to use the underlying
operating system. Therefore, finding the root causes of per-
formance problems requires investigation of the whole soft-
ware stack of various software component layers [43]. Sec-
ond, it is very challenging to identify performance issues
during the development because software vendors have lim-
ited time and environments to test various complex usage
scenarios. Consequently, there have been efforts to diagnose
performance problems during production deployment, long
after the development stage [43, 38, 32, 54].

Production-run performance diagnosis has been performed
generally in two major ways, which complement each other
and often are used together. First, software vendors main-
tain bug reporting systems [15, 12, 23]. These systems are
used for reporting software issues such as performance and
failures issues. Users can voluntarily report the details of
their performance issues, for instance, how to reproduce the
symptom, the specifications of their system, etc. Second,
some software vendors embed code logic to detect unex-
pected performance delay and to report the incident to the
vendors automatically [16]. Specifically such logic monitors
the performance of semantically individual operations of a
program1 and raises an alarm if their latency exceeds pre-
determined thresholds. However, the cost of human efforts
to support such logic and thresholds is high due to require-
ments to perform in-depth analysis on possible application
behaviors and to determine the range of its reasonable execu-
tion time. In addition, the location to insert the logic needs
to be manually determined considering its functionality and
run-time impact. Such manual efforts may involve human
errors due to the misunderstanding of complex program be-
haviors, particularly when dealing with large-scale software.
Although automating the process could save significant ef-
forts in performance debugging and testing, such feature is
not implemented by many software vendors in practice.

Furthermore, software users at the deployment stage re-
quire performance diagnostics for production software with-
out source code or deep knowledge of the target application.
For instance, service providers use open source programs

1Such operations are also known as application transactions,
user transactions [54], units [44], or business transactions [5,
19, 10]. We will use application transactions herein.
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or 3rd-party software as part of their large infrastructure.
Monitoring their performance in the production stage is im-
portant due to their impact on the overall quality of the
service. However, the lack of source code and code knowl-
edge for instrumentation make the monitoring challenging.
There are application performance management (APM) ser-
vices available in the market [5, 19, 10], but those services
require developers to modify the application code for insert-
ing the monitoring API provided by the service or support a
limited range of known applications and platforms with prior
analysis. Table 1 lists the APM services and existing tech-
niques for application performance diagnosis in comparison.
Among the compared approaches, only PerfGuard automat-
ically identifies application transactions and monitors their
performance with no code knowledge using only binaries.

To provide a generally applicable, binary-centric frame-
work for performance monitoring, we designed and imple-
mented PerfGuard, which automatically transforms the bi-
naries of an application without its source code or prior code
knowledge to monitor its performance at the production run.

PerfGuard performs dynamic analysis of a target applica-
tion and generates a performance profile, which is a “sum-
mary” of the application performance behavior. It is used
as a “hint” to create a set of monitoring code in the binary
format, called performance guards, to be inserted into the
binaries of the application to diagnose its performance in
the production environment. During the production run,
the inserted performance guards automatically monitor the
performance of specific application transactions that are au-
tomatically determined by our analysis. An unexpected per-
formance delay triggers a performance assertion set by the
performance guard, and invokes a performance diagnosis to
help developers and users resolve the issue.

PerfGuard utilizes program execution partitioning (a.k.a.
units [44]) to automate the recognition of application trans-
actions. Each unit is a segment of the execution of a process
that handles a specific workload. During the profiling of the
application, the units of the identical or similar control flow
are clustered into the same unit type. PerfGuard determines
the time threshold for each unit type during the profiling.
A set of performance guards are generated based on these
units and embedded into the application binaries. During
run-time, the type of each unit is inferred by utilizing the
unit’s distinct control flow and the run-time stack depth.
The performance of each unit execution is examined using
the time threshold determined for that unit type.

PerfGuard does not rely on specific types of performance
bugs. Instead, it focuses on finding time delays caused by
various hardware/software issues and collecting useful foot-
prints for troubleshooting them at the production run. To
show the effectiveness of PerfGuard, we have analyzed the
binaries of 6 popular applications and accurately detected
10 publicly known real world performance problems without
source code or code knowledge. The performance impact of
PerfGuard in these applications is less than 3% (§7).

The contributions of this paper are summarized as follows.

• Automated analysis of application behaviors and their
performance profile from only binaries based on pro-
gram execution partitioning.

• Enabling a lightweight and transparent insertion of
performance monitoring and diagnostic logic without
source code or code knowledge for the production stage.
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Figure 1: PerfGuard Architecture.

• Implementation and evaluation of a prototype with
various applications in the Microsoft Windows plat-
form showing its practicality discovering performance
bugs automatically in the real world software.

§2 presents the design overview of PerfGuard. The key
idea of unit-based performance analysis is presented in §3. §4
shows how to identify units and performance guards. Instru-
mentation of applications with performance guards is pre-
sented in §5. Implementation and evaluation of PerfGuard
are presented in §6 and §7. §8 and §9 respectively show
related work and discussions. §10 concludes this paper.

2. DESIGN OVERVIEW
The overall architecture of PerfGuard is presented in Fig-

ure 1. PerfGuard takes the binaries of a target application
as an input and automatically discovers application trans-
actions from a set of training runs to produce a perfor-
mance profile incrementally. The preciseness of the perfor-
mance profile increases as more training runs are performed.
By analyzing the performance profile PerfGuard generates
a set of binary code snippets, called performance guards,
that are injected into the binaries on the discovered applica-
tion transactions to monitor application performance. While
the instrumented application is in the production stage, the
performance guards detect potential performance anomalies
and inspect the application’s state to find their root causes.

To discover application transactions, PerfGuard leverages
the fact that a majority of large-scale applications are event-
driven and incorporate a small number of loops in each event
handler [44]. For instance, many server applications run
“listener” and “worker” loops to receive and handle client
requests. Also the applications with a graphical user inter-
face (GUI) are based on loops to respond to user actions.
Based on this, PerfGuard partitions the application’s execu-
tion into units, with each unit corresponding to one iteration
of such a loop. Intuitively, each unit represents an individual
task that the application accomplishes at an event.

PerfGuard performs profiling on the application to find
the code locations to be instrumented for unit performance
monitoring. For the classification of units during a produc-
tion run, PerfGuard clusters units with different calling con-
texts based on their control flow using a hierarchical clus-
tering algorithm. The distinct calling contexts of each unit
type allow PerfGuard to automatically identify which type
of unit the application is executing at run-time without code
knowledge. The profiling also runs a statistical training to
estimate reasonable execution time from which we determine
the performance threshold of each unit type.

The inserted performance guards monitor the execution
time of units while the application is in the production stage.
If the execution time of a unit exceeds the pre-determined
threshold of the corresponding unit type, PerfGuard auto-
matically detects it as a potential performance anomaly and
triggers an inspection of the unit’s execution.



Table 1: The comparison of the approaches for performance diagnosis of native applications. The App Trans-

action Performance Aware column represents whether the approach is aware of the performance of application
transactions. The No Code Knowledge Required and No Source Code Required columns respectively show whether
the approach requires code knowledge and the source code. The events at which a program state is collected
is shown in the Monitored Events column. The Selection of App Transactions column shows whether an appli-
cation transaction is determined automatically or manually.

Category Name
App Transaction No Code Know- No Source

Monitored Events
Selection of

Performance Aware ledge Required Code Required App Transactions

Tracer (kernel)
Ftrace [13] 7 X X System Events
LTTng (kernel tracer) [34] 7 X X System Events
IntroPerf [43] 7 X X System Events N/A

Profiler

perf [22] 7 X X System Events, Periodic Sampling
OProfile [21] 7 X X Periodic Sampling (These approaches
gperftools [14] 7 X 7 Periodic Sampling are not aware of
Gprof [36] 7 X 7 All Functions app transactions.)
Valgrind/Callgrind [50] 7 X X All Functions

Tracer (user) LTTng (userspace tracer) [34] 7 7 7 Manually Selected Functions
Embedded Perfor-

PerfTrack [16] X 7 7 App Transactions Manual
mance Diagnosis

Application AppDynamics* [5] X 7 7 App Transactions Manual

Performance New Relic* [19] X 7 7 App Transactions Manual

Management (APM) Dynatrace* [10] X 7 7 App Transactions Manual

APM PerfGuard X X X App Transactions (units) Automatic

*We do not consider the known applications and platforms that these APM services support with prior analysis.
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while (…) {
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} // end while
…

} // end UiThread

MouseLeftDown

MouseLeftUp

MouseLeftClick

ButtonClick

Idle

Redraw
Time …

Lo
op

U
ni

ts

(a) Type I: GUI applications with UI threads. GetEvent is
an example of a wait system call.

ListenerThread(…) {
…
while (…) {

job = Accept(…)
Signal(e)

} // end while
…

} // end ListenerThread

WorkerThread(…) {
…
while (…) {
Wait(e)
Process(job)

} // end while
…

} // end WorkerThread
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(b) Type II: Server programs with listener and worker
threads. Signal and Wait are an example of a signal-wait
relationship.

Figure 2: Event processing loops and unit execution.

3. UNIT-BASED PERFORMANCE ANALYSIS
PerfGuard achieves performance profiling and monitoring

at the granularity of a unit, which is a segment of a pro-
gram’s execution that represents a semantically independent
operation of the program. Previous work [44] discovered
that a wide range of applications are dominated by event
processing loops regardless of the platform and the language
used. The execution of such an application can be parti-
tioned into units by identifying the event processing loops
– one iteration of an event processing loop indicates a unit.
PerfGuard leverages unit-based performance monitoring and
analysis to automatically generate performance guards and
help the diagnosis of application performance issues. Un-
like previous work [44] that identifies units based on the
functional aspects of event processing loops only, our unit
identification considers their performance-related aspects.

Figure 2 illustrates the event processing loops of applica-
tions in two broad categories, GUI and server applications.
A GUI application typically uses an event processing loop in
a thread (that is, the UI thread) that responds to the user’s
actions, as illustrated in Figure 2a. At each iteration of the
event processing loop, the thread is blocked by a system call

that waits for a user action (e.g., a button click). Commod-
ity operating systems and GUI libraries provide such a wait
system call (GetEvent in Figure 2a), so applications can take
user actions as events (e.g. the GetMessage Windows API).
When the user performs an action, the loop dispatches the
event (DispatchEvent) to the corresponding callback func-
tion to handle the event. After the event is handled (that is,
after the execution of the unit), the loop steps to the next
iteration and the UI thread waits for another user action.

Server programs, such as Apache HTTP Server and MySQL
Server, employ multiple event processing loops across differ-
ent threads to handle client requests. In Figure 2b, a listener
thread and a worker thread are presented as two while loops
which have a signal-wait relationship. The listener thread re-
ceives a client request and sends a signal to a worker thread
for dispatching. The worker thread then handles the re-
ceived request. Once the request is processed, the worker
thread is blocked and waits for a new signal from the listener
thread. This model is commonly supported by commodity
operating systems with signal and wait system calls (e.g.,
SetEvent and WaitForSingleObject for Windows, and kill

and wait for the variants of Unix).
We note that the waiting time of an event-driven program

(either a GUI or a server application) for a user action or a
client request should not be considered as part of the unit ex-
ecution time as such idle time can be arbitrarily long regard-
less of performance issues. In addition, once a unit starts
execution, any latencies (e.g., thread blocking and context
switch time) should be included in the unit execution time
since such latencies affect the wall-clock time that the user
perceives. Specifically PerfGuard detects the start and the
end of each unit execution by instrumenting the wait system
calls in the two models. A return from a wait system call in
an event processing loop indicates the start of a unit, and
an invocation of the wait system call represents its end.

4. IDENTIFICATION OF UNITS AND PER-
FORMANCE GUARDS

In this section, we present how units are automatically
identified and binaries are instrumented for unit performance
monitoring and diagnosis.



4.1 Unit Identification
In order to identify units, PerfGuard finds event process-

ing loops through dynamic binary analysis [46] on the train-
ing workload of the application. We use dynamic analysis
since performance is inherently a property of run-time pro-
gram behavior and our analysis is based on system call in-
vocation. PerfGuard first identifies all the loops executed
by the training [48]. Next, we leverage the event process-
ing models (aforementioned in §3) to identify the event pro-
cessing loops among all the loops previously found. To be
determined as an event processing loop, a loop must either:

1. Invoke a wait system call that receives an external
event, or

2. Have a signal-wait relationship with another loop using
a certain system call pair.

The entries of the event processing loops and the wait system
calls are then instrumented to identify the unit boundaries
during profiling and production runs. We use the parameters
of the signal and wait system calls as hints to map which
thread sends a signal to which waiting thread. If multiple
event loops are nested, we use the top level event processing
loops taking the largest granularity to cover all nested loops.

4.2 Unit Classification Based on Control Flow
An event processing loop receives different types of events

as it iterates. The execution of a unit depends on the type
of the event that it handles. For example, a GUI application
may receive multiple button click events over time. Depend-
ing on which key or button is clicked, the handling unit will
have a distinct execution.

To monitor applications while distinguishing such differ-
ences without prior knowledge, PerfGuard classifies units
based on their control flows with the granularity of a func-
tion call and analyzing the calling contexts. The units with
the same calling context are classified as the same unit type.

Figure 3 presents the examples of the unit calling con-
texts of a GUI application and a server application: 7-Zip
File Manager (Figure 3a) and Apache HTTP Server (Fig-
ure 3b), respectively. During the program’s execution, some
calling contexts are shared by units of different unit types
(illustrated as ovals with no fill). PerfGuard maintains a list
of candidate unit types of the current context. For exam-
ple, when the program runs OnNotifyList in Figure 3a, the
candidate list contains two unit types: Key press event on

file list and Redraw event on file list. We discuss
the details of how unit types are recognized at run-time us-
ing the list of candidate unit types in §4.4.

4.3 Unit Clustering
In general, program profiling through dynamic analysis

could be incomplete. This can cause a unit with an undis-
covered calling context to appear during a production run.
PerfGuard addresses this issue by mapping a new unit to the
closest known unit using a hierarchical clustering of their
calling contexts. By grouping units with similar control
flows together, a newly observed unit is handled the same as
the group with its closest siblings (i.e., most similar control
flow and, by extension, time threshold).
Unit Distance Calculation. Given a pair of units X and
Y , we first derive a set of call paths PX and PY from the call
tree of each unit: PX = {p1, ..., pm} and PY = {q1, ..., qn}

1: function GetPathSet(Tree t)
2: return GetPath(t.root, ∅)
3: function GetPath(Node v, p′)
4: P = ∅
5: if v.children = ∅ then
6: P = P ∪ {p′ · v}
7: else
8: for vi ∈ v.children do
9: P = P ∪ GetPath(vi, p

′ · v)

10: return P
11: function PathDistance(pi, qj)
12: ` = LCS(pi, qj) . Longest common subsequence
13: b = max(|pi|, |qj |)
14: return (b− |`|)/b
15: function UnitDistance(UnitA, UnitB)
16: PA = GetPathSet(UnitA.callTree)
17: PB = GetPathSet(UnitB .callTree)
18: sum = 0
19: for pi ∈ PA do
20: for qj ∈ PB do
21: sum = sum + PathDistance(pi, qj)

22: return sum / (|PA| × |PB |)

Algorithm 1: Unit distance calculation.

where a call path pk = {v1, ..., vk} is a sequence of function
nodes from the root node v1 to a leaf node vk. The distance
between a call path pi in PX and a call path pj in PY is
calculated based on the longest common subsequence (LCS)
[39] of the two paths. The distance d(pi, qj) is defined as

d(pi, qj) =
max(|pi|, |pj |)− |LCS(pi, pj)|

max(|pi|, |pj |)
(1)

We use the lengths of the LCS and the longer call path
between pi and qj to normalize the distance value. Then,
based on the calculated call path distances, the unit distance
D(X,Y ) is defined as

D(PX , PY ) =

∑
pi∈PX

∑
qi∈PY

d(pi, qj)

|PX | · |PY |
(2)

Algorithm 1 presents the pseudo-code that computes the
distance between two units UnitA and UnitB .

Once the distance between every pair of units is calcu-
lated, a hierarchical clustering is performed on the distance
matrix; similar units are grouped into the same cluster, and
the units in the same group are classified as the same unit
type. PerfGuard then identifies the common calling contexts
across all units in each cluster to use the distinctness of the
calling contexts to represent the unit type. The calling con-
texts of uncovered units can later be marked and examined
by analyzing the call stack at run-time if a performance de-
lay is detected.

4.4 Run-Time Unit Type Inference
PerfGuard inserts performance guards into a set of func-

tions that can monitor distinct units based on calling con-
texts. However, identifying the type of a unit at an arbi-
trary point of production run without program semantics is
challenging due to the following reasons. First, the current
practice for identifying calling context at run-time is exam-
ining the full call-stack of a process (a.k.a. stack walking).
However, this may incur high performance overhead if it is
performed frequently at run-time. Second, given a current
context, the type of the current unit cannot be known a
priori. PerfGuard uses two techniques to handle these chal-
lenges with high accuracy.
Run-Time Calling Context Identification. If many
performance guards are used at run-time, PerfGuard can-
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with the edges showing the control flows of the units. The nodes in filled ovals are unique calling contexts of
the units of distinct unit types. The graphs are simplified for readability.
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Figure 4: Illustration of unit type inference at pro-
duction run. The unit types with the largest number
of occurrences are chosen to be the most likely types
of the unit.

not rely on stack walking to understand the current calling
context due to high run-time overhead. Instead, PerfGuard
infers the calling context by using the stack frame pointer
register that commodity processors support (e.g., the EBP
register in the x86 architecture) to identify the current con-
text efficiently. The function call conventions of modern ar-
chitectures make sure that the frame pointer register holds
the start address of the stack memory region that the current
function is using. At the entry of the event processing loop,
the stack frame pointer is recorded. Later when an inserted
performance guard is executed PerfGuard reads the stack
frame pointer again. The difference between the two stack
pointers approximates the current calling context. We call
the stack pointer difference the stack depth. Our evaluation
in §7 shows that this approach can identify calling contexts
with negligible overhead and has sufficient accuracy to sup-
port PerfGuard compared to stack walking.
Unit Type Inference From Context. After identify-
ing the current calling context, PerfGuard must determine
the type of the current unit in order to use the correspond-
ing time threshold for detection of performance anomaly.
Finding the correct unit type at run-time, however, is not
straightforward because the unit type is not conclusive when
the calling context is shared by units of different unit types.
In order to determine the most probable unit type at run-
time, PerfGuard identifies the potential unit types for each
calling context and assign them as unit type candidates dur-
ing profiling. At a production run, PerfGuard tracks the
occurrences of unit type candidates as the functions are ex-
ecuted in real time. The most likely unit type is inferred
using the number of accumulated occurrences.

Figure 4 illustrates how PerfGuard infers the unit type
as the program executes. In this example, there are three
unit types (X, Y and Z) composed of eight function calls
(A-H). Each unit type has different calling context. For ex-
ample, the unit type Z has the call sequence A-B-E-D-H.
The columns of the table show the distinct function calls
that the unit executes over time (A in the leftmost column
is executed first and H is executed last). Each row (except
the bottom-most one) tracks the number of the occurrences
of the unit types that PerfGuard has observed. The bottom-
most row shows the top unit types in the ranking based on
the number of occurrences marked. The unit types with the
largest number of occurrences are selected. If more than
one unit types become candidates due to the tie of their
numbers PerfGuard chooses the one with the smallest time
threshold assigned. This allows PerfGuard to detect perfor-
mance anomalies conservatively. As the execution proceeds,
the number of the selected unit types reduces and becomes
finally one in the last column after the function H is exe-
cuted.

We have observed that in the execution of real programs
the number of unit type candidates often becomes one at
the early stage of unit execution since modern applications
typically have many contexts with large depths including
library functions which make the unit types unique. Memory
overhead is not a significant issue since PerfGuard only has
to keep the most recent occurrence numbers (the right-most
column of the table) in memory with a fixed number of unit
types. In our experiments, the memory overhead was less
than 1 MB.

Our unit type inference along with the unit clustering mit-
igates the incompleteness of dynamic analysis by limiting the
impact of newly observed units in production environments.
§7.3 shows that our context inference has significantly bet-
ter scalability with high accuracy in comparison with stack
walking.

4.5 Estimating Unit Time Threshold
During the profiling of training runs, PerfGuard records

the execution time of each unit and estimates the time thresh-
old of the unit based on time samples. The threshold τ(A)
of a unit type A is calculated based on the series of the
time records RA = {r1, ..., rn} where µ(RA) is the arith-
metic mean, σ(RA) is the standard deviation of the time
records, and k is a constant:

τ(A) = µ(RA) + k · σ(RA) (3)



p: address of intercepted code, f : stack frame pointer
S: thread local storage, I: input performance profile

1: function onLoopEntry(p, f)
2: S.loop = I.findLoop(p) . Set current loop
3: S.loop.f = f . Remember stack frame pointer

4: function onUnitStart . Wait system call return
5: if S.loop 6= φ then
6: initialize S.unit
7: S.unit.types = ∅
8: S.unit.tstart = getTimestamp()

9: function onUnitContext(p, f)
10: if S.unit 6= φ then
11: tend = getTimestamp()
12: d = |S.loop.f − f | . Stack depth
13: id = (p, d) . Context ID
14: c = S.loop.findContext(id)
15: for ui ∈ c.unitTypes do
16: S.unit.types[ui].hits+ +

17: U ′ = ∅
18: for ui ∈ S.unit.types do
19: if ui.hits == max(S.unit.types.hits) then
20: U ′.append(ui) . Top unit type candidates

21: u′ = φ
22: for uj ∈ U ′ do
23: if uj .tthreshold == min(U ′.tthreshold) then
24: u′ = uj

25: telapsed = tend − S.tstart

26: if telapsed > u′.tthreshold then . Performance check
27: Assert(...) . Inspection

28: tcheck = getTimestamp() − tend

29: S.tstart = S.tstart + tcheck

Algorithm 2: Performance guards.

k is determined depending on the amount of performance
variance that the developer would like to allow at the pro-
duction. During production runs, the performance of the
units are checked using the thresholds in the performance
guards.

4.6 Performance Guard Generation
After the performance profiling, PerfGuard generates a

set of performance guards which are procedure calls to our
shared library functions. Algorithm 2 presents the three
library functions for the performance guards. One of the
functions is chosen for each performance guard based on the
code where the performance guard will be inserted into.

• onLoopEntry is called on the entry of an event pro-
cessing loop. When a program starts and a thread
enters an event processing loop, this function records
the stack frame pointer in the thread’s local storage.
PerfGuard begins to monitor the performance of the
unit when the thread finishes waiting for an event.

• onUnitStart intercepts the return from a wait system
call. It records the time when a wait system call re-
turns.

• onUnitContext is invoked at the interception of the
calling contexts instrumented for performance checks.
It infers the type of the current unit (§4.4) and per-
forms an inspection (the Assert) if it violates the pre-
defined threshold. The inspection algorithm can be
determined by the administrators or developers de-
pending on their needs (e.g., a memory dump). In
our evaluation, we examine the thread’s call stack as
one case to demonstrate the effectiveness of PerfGuard.
Call stack traces provide a wealth of information for
troubleshooting performance issues since they provide
not only the function executed at the anomaly but also
the sequence of caller functions leading to the function.

* PG_for_X (target, stackframe) {
*   <Save registers>
*   <Set target and stackframe>
*   <Save error number>
*   ;; Do performance check
*   <Restore error number>
*   <Restore registers>
*   return
* }

Foo (a, b) {
...

+   CALL PG_for_X
instruction X
...

}

Figure 5: Code instrumentation for a performance
guard (abstract code). A performance guard and
the patch applied to the program code are tagged
with ‘*’ and ‘+’ respectively.

5. INSTRUMENTATION OF APPLI-
CATIONS WITH PERFORMANCE
GUARDS

This section presents how performance guards are inserted
into a program. Inserting new code into a binary program
is in general not trivial due to the constraints in the bi-
nary structure such as the dependencies across instructions.
PerfGuard has following requirements in functionalities.
Instrumenting Arbitrary Instructions. First, instru-
menting arbitrary instructions is important to support any
type of application code. In order to provide this character-
istic, PerfGuard should be able to insert performance guards
in any position of code. Our technique is based on Detours
[40] which replaces target instructions with a jump instruc-
tion and executes the original instructions after the inserted
code (i.e., trampoline). However, Detours assumes the re-
placed instruction block is a subset of a basic block; thus, it
does not allow the program to jump into the middle of the
instruction block. To solve this challenge we use NOP inser-
tion and a binary stretching technique [33]. PerfGuard in-
serts NOP instructions before every instruction instrumented
in the binary, and replaces each NOP instruction block with
a CALL instruction when the program is loaded. PerfGuard
generates performance guards in the form of a shared library
and modifies the import table of the main executable, so it
can be loaded by the OS’s loader.
Low Run-Time Overhead. Second, keeping low overhead
is required so that PerfGuard can be deployed in produc-
tion environments. The overhead depends on the number
of functions that are instrumented and how frequently the
instrumented functions are executed. To keep the overhead
minimal, PerfGuard instruments a subset of the functions
that are effective for unit-based performance diagnosis. In
our prototype implementation, we instrument the functions
that are shared by the least number of units of distinct types.
This is the key mechanism that enables PerfGuard to mini-
mize the number of functions to instrument while maintain-
ing high accuracy in the unit type inference. Later in §7, we
show that PerfGuard achieves very low overhead.
Side-Effect Free. Lastly, performance guards should not
interfere with the original application code. Therefore, any
code in performance guards should execute so that it can
record and recover the original program state respectively
before and after performance guard’s execution. PerfGuard
preserves the application’s original state by saving the ex-
ecution state in memory before a performance check and
restoring it after the execution of a performance guard as
illustrated in Figure 5. PerfGuard also preserves the stack
memory layout for compatibility since it can be used during
performance inspection.



6. IMPLEMENTATION
The design of PerfGuard is general to be applied to any

OS such as Windows, Unix, Linux, and Mac OS. For our
evaluation, we implemented PerfGuard on Microsoft Win-
dows due to its popularity in enterprise environments and
a wide variety of closed source software that PerfGuard can
be applied due to its binary-centric design.

The identification of units requires the fine grained in-
spection of code execution to monitor run-time instructions.
We used the Pin dynamic instrumentation platform [46] for
this feature. Also, we instrumented the Windows APIs in
Table 2 that represent signal and wait system calls to iden-
tify units. Our evaluation shows that these cover all the
applications we have tested.

Table 2: Windows APIs instrumented for unit iden-
tification.

Wait Signal-Wait

GetMessage PostQueuedCompletionStatus-GetQueuedCompletionStatus
ReadConsole SetEvent-WaitForSingleObject

accept ResetEvent-WaitForSingleObject
recv PulseEvent-WaitForSingleObject

In order to retrieve high resolution time stamps for per-
formance checks, we used CPU performance counters via
the QueryPerformanceCounter Windows API [24], which is
provided in Windows XP and later.

When calculating the time threshold of a unit type, we use
k = 4 for our experiments based on the three-sigma rule [53].
With k = 4 a value falls within the range of the standard
deviation with the probability of 99.993%, so the false alarm
rate is 0.007% statistically. Existing work [54] also leverages
a similar approach with k = 3.

For the insertion of performance guards into programs,
we used an extended version of Detours [40] which we sig-
nificantly improved to support instrumentation of arbitrary
instructions. BISTRO [33] is used to stretch the application
binaries and insert NOPs before instrumentation. To inspect
the call stack on a performance anomaly, we used the Cap-

tureStackBackTrace Windows API [8].

7. EVALUATION
In this section, we evaluate several aspects of PerfGuard

experimentally. All experiments are performed on a machine
with an Intel Core i5 3.40 GHz CPU and 8 GB RAM run-
ning Windows Server 2008 R2. We focus on answering the
following key questions in our evaluation:

• How successfully can PerfGuard diagnose real world
performance problems?

• How effective is unit clustering based on control flow
in performance monitoring?

• How robust and accurate is the run-time context in-
ference?

• What is the performance overhead of PerfGuard?

7.1 Diagnosing Real World Performance Bugs
PerfGuard enables efficient performance bug diagnosis in

production environments. Once the performance guards are
inserted into a program, PerfGuard monitors the units of the
program at run-time. If any unit type has longer execution
time than its threshold, it is reported along with its call
stack. We chose 6 popular Windows applications to eval-
uate PerfGuard on various event-based programs: servers

(Apache HTTP Server and MySQL Server), text-based clients
(MySQL Client), and GUI programs (7-Zip File Manager,
Notepad++, and ProcessHacker). After studying over 200
bug reports for those 6 applications, we collected 10 perfor-
mance bugs caused by diverse root causes: incorrect use of
APIs, unexpectedly large inputs, and poor design.

Table 3 shows the performance bugs detected by PerfGuard.
The first two columns show the program name and the iden-
tification of this bug. The following five columns describe
the characteristics of the unit type where the performance
bug is detected. |UC|, |P |, and |F | respectively show the
number of distinct call trees, the average number of call
paths, and the average number of functions in the unit type.
|PG| is the number of performance guards inserted into the
program to detect the bug. t is the time threshold in mil-
liseconds for the unit type.

Figure 6 shows the example traces that PerfGuard gener-
ates at the detection of increased latencies caused by three
performance bugs (Apache 45464, MySQL 15811, and 7-
Zip S3) in Table 3. When a performance bug is detected,
PerfGuard takes a snapshot of the call stack. Note that,
the call stack at the time of root cause and the call stack
at the time of bug detection share part of the call stacks in
common, but there may be minor differences because the
program could have called or returned from several func-
tions since the problematic logic was executed. The gap
between the time of bug (located manually) and the time
of PerfGuard’s detection is calculated as the difference be-
tween their respective call stacks, shown as d in Table 3 and
Figure 6. Essentially this number may represent the devel-
oper’s manual effort to find a root cause from the detection
point, and we aim to find a balance between minimizing d
and adding too many performance guards which will increase
the run-time overhead.

The two columns, Root Cause Binary and Root Cause
Function, show the root cause of performance bugs, which
are manually determined from their bug reports and reso-
lutions maintained in the software’s bug repositories. We
note that this information is collected only for the evalua-
tion purposes as the ground truth and PerfGuard does not
need nor have access to such information.

In all cases, the performance bugs are correctly detected
along with the specific details on the buggy unit types. The
comparison between the stack on detection and the root
cause shows that the call stack distance (d) was 1-8 (i.e.,
only 1 to 8 functions away). After examining just a few
functions in the call stack provided by PerfGuard, develop-
ers will be able to easily identify the bug’s root cause. In
addition to the 6 applications that are open source, we suc-
cessfully analyzed and found units from a set of proprietary
software shown in Table 4.

Table 4: Unit identification of proprietary software.

Program Name Unit Loop Binary

Acrobat Reader AcroRd32.dll, Internal Library
Visual Studio 2008 msenv.dll, Internal Library
Windows Live Mail msmail.dll, Internal Library
Evernote Evernote.exe, Main Binary
Calculator calc.exe, Main Binary
WordPad mfc42u.dll, External Library
Paint mfc42u.dll, External Library

The Unit Loop Binary column shows the binary where
the unit loop is detected. We do not use these applications
in the evaluation due to the lack of ground truth and space
constraints.



Table 3: Evaluation of PerfGuard on the root cause contexts of real world performance bugs.

Program Bug Unit Type Characteristics PerfGuard Evaluation
Name ID |UC| |P | |F | |PG| t d Root Cause Binary Root Cause Function

Apache 45464 [7] 8 17423 635 138 9944 4 libapr-1.dll, Internal Library apr_stat

MySQL Client 15811 [17] 24 255126 106 13 997 8 mysql.exe, Main Binary my_strcasecmp_mb

MySQL Server 49491 [18] 8 270454 980 303 2079 3 mysqld.exe, Main Binary Item_func_sha::val_str

7-Zip FM S1 [3] 3 30503 140 115 122 3 7zFM.exe, Main Binary RefreshListCtrl

7-Zip FM S2 [2] 2 27922 139 127 109 1 7zFM.exe, Main Binary RefreshListCtrl

7-Zip FM S3 [4] 3 4041 65 15 110 2 7zFM.exe, Main Binary Refresh_StatusBar

7-Zip FM S4 [1] 6 26842 143 120 101 3 7zFM.exe, Main Binary RefreshListCtrl

Notepad++ 2909745 [20] 16 352831 711 370 6797 6 notepad++.exe, Main Binary ScintillaEditView::runMarkers

ProcessHacker 3744 [9] 1 47910 86 23 3104 4 ProcessHacker.exe, Main Binary PhAllocateForMemorySearch

ProcessHacker 5424 [25] 32 62136 69 19 10 5 ToolStatus.dll, Plug-in ProcessTreeFilterCallback

Unit Call Stack
T libapr-1.dll!convert_prot

libapr-1.dll!more_finfo
libapr-1.dll!apr_file_info_get
libapr-1.dll!resolve_ident

R libapr-1.dll!apr_stat
- mod_dav_fs.so!dav_fs_walker
- mod_dav_fs.so!dav_fs_internal_walk
- mod_dav_fs.so!dav_fs_walk
- …
- libhttpd.dll!ap_run_process_connection
- libhttpd.dll!ap_process_connection
- libhttpd.dll!worker_main

Unit threshold violation in httpd.exe:

Performance	Bug:	Apache	45464

Unit Call Stack
T mysqld.exe!get_int_arg

mysqld.exe!_output
mysqld.exe!sprintf

R mysqld.exe!Item_func_sha::val_str
- mysqld.exe!Item::save_in_field
- mysqld.exe!fill_record
- …
- mysqld.exe!dispatch_command
- mysqld.exe!handle_one_connection

Unit threshold violation in mysqld.exe:

Performance	Bug:	MySQL	49491Unit Loop
Location

d=4
Unit Call Stack

T 7zFM.exe!NWindows::NCOM::MyProp
VariantClear
7zFM.exe!GetItemSize

R 7zFM.exe!Refresh_StatusBar
- 7zFM.exe!OnMessage
- …
- USER32.dll!DispatchMessageWorker
- USER32.dll!DispatchMessageW
- 7zFM.exe!WinMain

Unit threshold violation in 7zFM.exe:

Performance	Bug:	7-Zip	S3

d=3 d=2

Unit Loop
Location

Unit Loop
Location

: Threshold violating function : Root cause function : Common context of and
Legends

-RT T R

Figure 6: Sample traces automatically generated by PerfGuard for three performance bugs in Table 3.

Table 5: Performance of top 10 costly unit types. µ
is the mean in µsecond. c is the performance vari-
ance in percentage where c = σ/µ× 100 and σ is the
standard deviation.

(a) Apache HTTP Server.

Rank µ c

1 839 1.02
2 695 5.3
3 540 20.4
4 517 2.3
5 511 1.4
6 507 21.0
7 488 27.9
8 467 5.8
9 462 21.9
10 439 8.1

Avg. 11.52

(b) 7-Zip File Manager.

Rank µ c

1 1325005 36.1
2 1208225 7.5
3 1008056 4.6
4 952741 6.6
5 703649 10.9
6 96492 3.4
7 89088 17.8
8 81647 7.4
9 80450 3.5
10 79584 11.1

Avg. 10.89

7.2 Performance Distribution of Clustered Units
PerfGuard monitors application performance by recogniz-

ing units, which are clustered into unit types based on con-
trol flow automatically. In this section, we evaluate the ef-
fectiveness of our unit clustering. We assume that the same
type of units have a consistent execution behavior and thus
have similar execution time. To show that our assumption is
valid in real-world applications, we measured the means and
variances of unit execution time in Apache HTTP Server and
7-Zip File Manager, which represent server programs and
GUI applications, respectively. A set of performance guards
were created and inserted into each application binary in
order to record the unit time during the program execution.
Table 5 shows this data for the applications. Each row rep-
resents the performance statistics of one unit type, which is
a group of units clustered by the similarity of control flow.
Relative standard deviation in percentage (c) is used to show
the performance variance.

To generate realistic workloads for Apache HTTP Server,
we used the web pages provided by Bootstrap [6]. These
pages have various sizes and contents. ApacheBench (ab) is
used to request each of the 20 Bootstrap examples 10,000
times with the concurrency of 4 threads. This yielded a
much larger number of units, 1,000,010, but due to the sim-

ilarity among them (e.g., similar page fetches) these units
were clustered into only 26 unit types.

For 7-Zip File Manager, we performed the standard set of
UI actions that users would take. Specifically, we navigated
through various directories using the file manager, created
and deleted files, compressed and uncompressed 10-100 files,
and clicked on the menu and tool bar items. 40598 units were
recognized and they were categorized into 358 unit types.

In both cases, the performance deviation of the top 10
most costly unit types is about 11 percent (11.52% for Apache
HTTP Server and 10.89% for 7-Zip File Manager). Note
that the variation is quite low since performance bugs typi-
cally incur with more than 11 percent of latency difference.
This result shows that the automated clustering based on
control flow accurately captures similar behaviors exhibiting
similar run-time latencies. We find that the performance de-
viation of each unit type is relatively small despite the vary-
ing input workload because the variation in workload (both
in size and content) likely alters the program’s control flow.
We observed that those performance deviations also come
from other factors, such as underlying libraries and system
calls, that contribute to the variation of unit performance.

7.3 Run-Time Context Inference
Overhead of Run-Time Context Inference. In this
experiment, we measure the overhead of our run-time con-
text inference, the key mechanism used in unit type in-
ference. Figure 7a shows the overhead of Windows APIs
(CaptureStackBackTrace) versus our approach using differ-
ent call stack sizes. Traditional stack-walk approaches cause
non-negligible overhead due to traversing all stack frames to
infer the unit type. Moreover, the overhead significantly
increases as the call stack grows. In contrast, our mecha-
nism is much faster and is not affected by the size of the
call stack. Such scalability is achieved because our context
inference only has to read a hardware register regardless of
the depth of the call stack. In our experiments, an aver-
age call stack size at the instrumented functions is 23.6 and
Figure 7a shows that our approach (0.284 µsec) is 64 times
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Figure 7: Performance evaluation of PerfGuard.

faster than Windows stack walking (18.11 µsec with hashing
and 17.4 µsec without hashing).
Accuracy of Run-Time Context Inference. In this
experiment, we study the accuracy of run-time context in-
ference technique. We choose one server (Apache HTTP
Server) and one client application (MySQL Client). We exe-
cute each application with a set of training inputs and record
a calling context and a stack depth for each function call.

For a given function and stack depth, if there exists only
one calling context, we can correctly infer that context at
run-time. However, if there exists more than one calling
context for the stack depth, we cannot uniquely indicate the
calling context. Our approach was able to correctly identify
the calling context from 93.91% of function calls in Apache
and 99.06% of function calls in MySQL. In other words,
the stack depth uniquely indicates the call stack 93.93% of
the time in Apache, and 99.06% in MySQL. Note that even
though we fail to uniquely infer the calling context for a few
cases, it does not mean that PerfGuard will fail to identify
the corresponding unit type. Our unit type inference tech-
nique (discussed in §4.4) still may identify the correct unit
types as the program executes the following functions.

The result in this experiment shows our technique is sig-
nificantly faster than traditional stack-walk based technique
while we can accurately infer the calling context at run-time.

7.4 Performance Overhead of PerfGuard
PerfGuard is designed to be used in the production stage,

so its run-time overhead is a critical evaluation metric. We
present this data in the following two sub-categories.
Microbenchmarks on Performance Guards. A ma-
jor source of performance overhead of PerfGuard is perfor-
mance guard components. Thus, it is important to keep
the overhead of performance guards as low as possible. Ta-
ble 6 shows the latency of the individual performance guard
functions.

Table 6: Latency of performance guards.

Performance guard Latency (µseconds)

onLoopEntry 3.52
onUnitStart 1.31
onUnitContext 4.37

The latency is measured from 10,000 executions of a per-
formance guard component and the table shows the aggre-
gated time. In all three cases, the latency of a single perfor-
mance guard execution is less than 0.5 nanosecond.
Overall Impact on Application Performance. Figure
7b and Figure 7c show the performance impact of PerfGuard
on Apache HTTP Server and MySQL Server respectively.

The two server programs are selected due to the availability
of their benchmarking tools.

In Figure 7b, the X-axis is the number of requests sent
in percentage and the Y-axis is the response time. We used
ApacheBench (ab) to generate 10,000 web requests. Fig-
ure 7c shows the number of completed transactions per sec-
ond by MySQL Server with an increasing number of threads
(8∼512). SysBench is used for the benchmarking to query
a table with 10,000 rows concurrently.

200 functions of Apache HTTP Server and 100 functions of
MySQL Server are instrumented by PerfGuard as described
in §5 to show the overhead. The results show the overhead
by PerfGuard on two applications is less than 3%.

8. RELATED WORK
Execution Partitioning. BEEP [44] derives the units of
program execution using loop iterations. We leverage the
approach of BEEP in the Windows platform to identify ap-
plication execution units. Unlike BEEP, which is designed
to detect the inter-dependency of units for security analysis,
PerfGuard identifies units based on temporal loop relation-
ship and focuses on the classification of units with similar
control flow for performance diagnosis.
Performance Debugging in Production. PerfTrack [16]
provides a performance debugging feature used in Microsoft’s
software. This system manually inserts hooks into the key
functions of applications to measure their run-time perfor-
mance and report any incident when their execution time
surpasses internal thresholds. This approach is effective
due to developers’ domain knowledge regarding which code
represents the key functions and how long their execution
should be. Its downside is that it requires the source code
and the application knowledge, which may not be readily
available, and the manual efforts for the threshold determi-
nation and source instrumentation. In this paper we aim to
enable a general functionality similar to PerfTrack applicable
to any software without source code or domain knowledge.

Several approaches use call stacks to investigate perfor-
mance problems. IntroPerf [43] infers the performance of
individual functions in the call stacks captured by a system
event tracer (e.g. ETW [11]). PerfGuard determines the
key application workload using unit type identification and
the observation of its run-time performance is done by in-
strumented code. Therefore it achieves a more efficient and
focused monitoring compared to sampling based IntroPerf.

There exist techniques that use information from OS re-
ports for performance and/or reliability issues. In particu-
lar, Microsoft has a system called Windows Error Reporting



(WER) [26] which collects call stacks from numerous Win-
dows machines. StackMine [38] models CPU consumption
bugs and “wait bugs” based on clustered call stack patterns
from call stack mining which allows to identify common root
causes from diverse call stacks in different configurations and
deployments. Bartz et al. [27] proposed a machine learn-
ing based scheme to compute call stack edit distance from
failure reports providing a probabilistic similarity metric for
failure parts. As shown in these approaches, in order to un-
derstand the relevance of code to the root cause of a bug, call
stack is a key structure to determine its context becoming
the index of code execution. A general utility function (e.g.,
malloc) can be used by multiple functions and depending
on its caller its execution may show corresponding behavior.
To recognize this distinction, PerfGuard uses call stack both
in unit identification and at run-time. After unit identifica-
tion, we derive a performance threshold for an unit context
which is recognized at run-time and its threshold is verified.

Log2 [35] is a cost-aware logging mechanism that controls
the overhead of logging while keeping its performance diag-
nosis capability. This approach is useful in practice, but they
have different focus from our work: a cost-aware run-time
logging.
Performance Profilers. Performance analysis tools, such
as [36, 14, 21, 22, 13, 34], are popular in the development
stage to determine the bottleneck of software functions. These
tools constantly and blindly sample CPU usages of target
program, some of which rely on profiling code embedded
into the program which requires a compilation option. The
accuracy of performance diagnosis highly depends on the
frequency of sampling and higher frequency causes higher
performance overhead. Therefore they are not commonly
used in the production stages.

Advanced techniques such as genetic algorithm [55], sym-
bolic execution [31, 28, 59] and guided testing [37] are used
to automatically generate the test inputs to trigger perfor-
mance bugs. PerfGuard can complement these approaches
by providing better accuracy in unit threshold determina-
tion and run-time detection of threshold violation.

Xiao et al. [57] proposed a technique to use different work-
loads to identify workload-dependent performance bottle-
necks in GUI applications. Our technique may potentially
complement their approach by providing the unit type clas-
sification and supporting the run-time violation detection.
In future work, we also plan to leverage their technique to
accurately identify workload-dependent unit thresholds in
training runs.

CARAMEL [51] proposed a static analysis technique to
automatically find and fix performance bugs that break out
of the loop wasting computation from C++ and Java code.

Toddler [52] finds repetitive memory accesses in loops
for debugging Java program performance. In comparison,
PerfGuard focuses on finding time delays caused by various
reasons (memory accesses can be one of them) for native
programs.
Mobile App Performance. There are approaches [54, 45]
that monitor mobile application binaries to identify the crit-
ical paths of user transactions and provides detailed perfor-
mance breakdowns on the detection of performance issues.
Compared to that, our approach utilizes a more general con-
cept of workload units based on the execution partitioning
and unit clustering to target a wider scope of applications.

9. DISCUSSION
Target Applications of PerfGuard. PerfGuard auto-
matically recognizes application units and detects perfor-
mance bugs associated with their latency. Therefore, the
main target of PerfGuard is the set of applications with the
concept of workload units (also known as app transactions)
and bounds of expected response time. Most server pro-
grams, interactive software, and GUI applications belong to
this category.

The performance of server programs are typically defined
by service-level agreements (SLA) which are standardized
service contracts regarding quality and responsibilities on
violations, agreed between the service provider and the ser-
vice user. Given a request from a client, the server should
respond within a bounded response time.

Another set of programs with workload units is the pro-
grams with the graphical user interface (GUI) because peo-
ple have limited tolerance on the response in practice. Re-
lated approaches in human interface [30, 47, 49] show the ac-
ceptable response delay for a user interface is around 100 ms.
User-interactive applications can take benefits of PerfGuard
due to their workload units and corresponding performance.
Training and Variance of Workload. PerfGuard re-
quires a training stage to generate a profile of software work-
load. It is theoretically incomplete and there is a chance that
inexperienced workloads can appear during production runs.
To address this issue, PerfGuard uses the unit type inference
which allows a variation of unit control flow. Our evalua-
tion shows that PerfGuard is sufficiently effective in moni-
toring the performance of popular applications. Table 3 and
Figure 7 show that PerfGuard effectively detects real world
performance bugs with negligible run-time overhead. Also
existing techniques [58, 56, 41, 29] can be leveraged to im-
prove our training coverage. We envision future integration
of PerfGuard and these techniques.

10. CONCLUSION
We present PerfGuard, a novel system to enable perfor-

mance monitoring and diagnosis without source code and
code knowledge for a general scope of software. PerfGuard
automatically identifies loop-based units and determines their
performance thresholds. Binary only software is transpar-
ently instrumented to include performance guards, which
monitor application performance efficiently and report de-
tailed call stacks on the detection of performance anoma-
lies. In the evaluation of six large scale open source software
with ten real-world performance bugs, PerfGuard success-
fully detected all of them with the run-time overhead under
3% showing an efficient solution for troubleshooting perfor-
mance problems in production environments.
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