
INTROPERF: TRANSPARENT CONTEXT-
SENSITIVE MULTI-LAYER PERFORMANCE 

INFERENCE USING SYSTEM STACK TRACES

Chung Hwan Kim*, Junghwan Rhee, Hui Zhang, Nipun Arora, 
Guofei Jiang, Xiangyu Zhang*, Dongyan Xu*

NEC Laboratories America
*Purdue University and CERIAS



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Performance Bugs
• Performance bugs

• Software defects where relatively simple source-code changes can 
significantly speed up software, while preserving functionality [Jin 
et al., PLDI12].

• Common issues in most software projects and these defects are 
hard to be optimized by compilers due to software logic.

• Many performance bugs escape the development stage and cause 
cost and inconvenience to software users.

2



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Diagnosis of Performance Bugs is Hard

3

• Diverse root causes
• Input/workload
• Configuration
• Resource
• Bugs
• Others

• Performance overhead 
propagates.

=> Need performance analysis 
in a global scope!

“Performance problems require understanding all system layers”
-Hauswirth et al., OOPSLA ‘04

void main () {
...
do (input)
...
fwrite(input)
...

}

void do (input) {
while (...) {

latency
}

}

int fwrite (input) {
write (input)

}

User space

Kernel space
int write (input) {

latency
}



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Diagnosis of Performance Bugs
• Development stage

• Source code is available.
• Developers have knowledge on programs.
• Testing workload
• Heavy-weight tools such as profilers and dynamic binary 

instrumentation are often tolerable.

• Post-development stage
• Many users do not have source code.
• Third-party code and external modules come in binaries.
• Realistic workload at deployment
• Low overhead is required for diagnosis tools.

• Q: How to analyze performance bugs and find their root 
causes in a post-development stage with low overhead?

4



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

OS Tracers and System Stack Trace
• Many modern OSes provide 

tracing tools as swiss-army-tools
• These tools provide tracing of OS 

events.
• Examples: SystemTap, Dtrace, 

Microsoft ETW

• Advanced OS tracers provide 
stack traces.
• We call OS events + stack traces = 

system stack traces.
• Examples: Microsoft ETW, Dtrace

• Challenges
• Events occur on OS events.
• Missing application function latency: 

How do we know which program 
functions are slow?

5

System Stack Trace

t1 t2 t3 t4
S1 S2 S3 S1

Time 
Stamp

OS
Event

A
B
D

A
B
D

A
C
D

A
C
D

User
Code
Info.

OS Kernel Trace

App
1

App 
2



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

IntroPerf
• IntroPerf: A diagnosis tool for Performance Introspection 

based on system stack traces
• Key Ideas

• Function latency inference based on the continuity of a calling 
context

• Context sensitive performance analysis

6

System	
Stack	Traces

Function	
Latency	
Inference

Performance-
annotated	

Calling	Context
Ranking

Dynamic	
Calling	Context	

Indexing

Top-down	
Latency	

Breakdown

A	Report	of	
Performance	

Bugs

Transparent	Inference	of	
Application	Performance

Context-sensitive	
Performance	Analysis



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Inference of Function Latencies
• Inference based on the continuity 

of a function in the context
• Algorithm captures a period of a 

function execution in the call stack 
without a disruption of its context

7

Function Execution
DD

B C

A

t1

A
B
D

t2

A
B
D

t3

A
C
D

A stack trace event 
Function lifetime

t4

A
C

Call Return

Conservative estimation



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Inference of Function Latencies
• Inference based on the continuity 

of a function in the context
• Algorithm captures a period of a 

function execution in the call stack 
without a disruption of its context

8

Function Execution
DD

B C

A

t1

A
B
D

t2

A
B
D

t3

A
C
D

A stack trace event 
Function lifetime

t4

A
C

Call Return

Conservative estimation

Yes
Yes
Yes

A
B
D

A (T1-T1)
B (T1-T1)
D (T1-T1)

IsNew ThisStack Register (Time)

Captured Function Instances



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Inference of Function Latencies
• Inference based on the continuity 

of a function in the context
• Algorithm captures a period of a 

function execution in the call stack 
without a disruption of its context

9

Function Execution
DD

B C

A

t1

A
B
D

t2

A
B
D

t3

A
C
D

A stack trace event 
Function lifetime

t4

A
C

Call Return

Conservative estimation

No
No
No

A
B
D

A (T1-T2)
B (T1-T2)
D (T1-T2)

Captured Function Instances

IsNew ThisStack Register (Time)



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Inference of Function Latencies
• Inference based on the continuity 

of a function in the context
• Algorithm captures a period of a 

function execution in the call stack 
without a disruption of its context

10

Function Execution
DD

B C

A

t1

A
B
D

t2

A
B
D

t3

A
C
D

A stack trace event 
Function lifetime

t4

A
C

Call Return

Conservative estimation

No
Yes
Yes

A
C
D

A (T1-T3)
C (T3-T3)
D (T3-T3)

B (T1-T2)
D (T1-T2)

Captured Function Instances

IsNew ThisStack Register (Time)



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Inference of Function Latencies
• Inference based on the continuity 

of a function in the context
• Algorithm captures a period of a 

function execution in the call stack 
without a disruption of its context

11

Function Execution
DD

B C

A

t1

A
B
D

t2

A
B
D

t3

A
C
D

A stack trace event 
Function lifetime

t4

A
C

Call Return

Conservative estimation

No
No

A
C

A (T1-T4)
C (T3-T4)

B (T1-T2)
D (T1-T2)

D (T3-T3)
Captured Function Instances

IsNew ThisStack Register (Time)



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Inference of Function Latencies
• Inference based on the continuity 

of a function in the context
• Algorithm captures a period of a 

function execution in the call stack 
without a disruption of its context

12

Function Execution
DD

B C

A

t1

A
B
D

t2

A
B
D

t3

A
C
D

A stack trace event 
Function lifetime

t4

A
C

Call Return

Conservative estimation

A (T1-T4)
C (T3-T4)

B (T1-T2)
D (T1-T2)

D (T3-T3)
Captured Function Instances

IsNew ThisStack Register (Time)



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Dynamic Calling Context Tree
• A calling context is a distinct order 

of a function call sequence 
starting from the “main” function 
(i.e., a call path).

• We use calling context tree as the 
model of application performance 
to organize inferred latency in a 
structured way.

• Unique and concise index of a 
dynamic context is necessary for 
analysis.
• Adopted a variant of the calling 

context tree data structure 
[Ammons97].

• Assign a unique number of the 
pointer to the end of each path.

13

Index Path
1
2

Dynamic Calling Context Tree

root

A

B C

D D

t1

A
B
D

t2

A
B
D

t3

A
C
D

t4

A
C

Stack Traces



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Performance-annotated Calling Context Tree
• Top-down Latency Normalization

• Inference of latency performed in all 
layers of the stack causes overlaps of 
latencies in multiple layers.

• Latency is normalized by recursively 
subtracting children functions’ 
latencies in the calling context tree.

• Performance-annotated Calling 
Context Tree
• Calling context tree is extended by 

annotating normalized inferred 
performance latencies in calling 
context tree.

14

B

A

D

Call Return Call Return

Call Return
D

Call Return
C

Dynamic Calling Context Tree

root

A

B C

D D



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Context-sensitive Performance Analysis

• Context-aware performance analysis involves diverse states of 
programs because of context-sensitive function call behavior. 

• Manual analysis will consume significant time and efforts of 
users.

• Ranking of function call paths with latency allows us to focus 
on the sources of performance bug symptoms.

15



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Ranking Calling Contexts and Functions
• We calculate the cost of each 

calling context (i.e., call path from 
the root) by storing the inferred 
function latencies.

• The top N ranked calling contexts 
regarding latency (i.e., hot calling 
contexts) are listed for evaluation. 

• Furthermore, for each hot calling 
context, function nodes are 
ranked regarding their latencies 
and hot functions inside the path 
are determined.

Top rank context

Lower rank context

Low level 
system layer 
(e.g., syscall)

High level 
application 

function
(e.g., main)

Low level 
system layer 
(e.g., syscall)

High level 
application 

function
(e.g., main)

Top rank context

Lower rank context

16



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Implementation
• IntroPerf is built on top of a production tracer, Event 

Tracing Framework for Windows (ETW).

• We use the stack traces generated on system calls and 
context switch events.

• Parser of ETW events and performance analyzer
• 42K lines of Windows code in Visual C++

• Experiment machine
• Intel Core i5 3.40 GHz CPU
• 8GB RAM
• Windows Server 2008 R2

17



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Evaluation
Q1: How effective is IntroPerf at diagnosing performance 
bugs?

Q2: What is the coverage of program execution captured 
by system stack traces?

Q3: What is the runtime overhead of IntroPerf?

18



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Evaluation – Performance Bugs
• Q1: How effective is IntroPerf at diagnosing performance 

bugs?

• Ranking of calling contexts and function instances allows 
developers to understand “where” and “how” performance bugs 
occur and determine the suitable code to be fixed.

• Evaluation Setup
• Server programs (Apache, MySQL), desktop software (7zip), system 

utilities (ProcessHacker similar to the task manager)
• Reproduced the cases of performance bugs. The ground truth of root 

causes are the patched functions.
• Bug injection cases. The root causes are the injected functions.

• Two criteria depending on the locations of the bugs
• Internal bugs and external bugs

19



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Evaluation – Performance Bugs
• Internal Bugs

• Performance bugs inside the main binary

20



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Evaluation – Performance Bugs
• Internal Bugs

• Performance bugs inside the main binary

21

MySQL 49491

Top rank 
context

Lower rank 
context

Low level system layer
(e.g., system call) 

High level application function
(e.g., main)



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Evaluation – Performance Bugs
• Internal Bugs

• Performance bugs inside the main binary

22

MySQL 49491

Top rank 
context

Lower rank 
context

Low level system layer
(e.g., system call) 

High level application function
(e.g., main)

Most costly function in a path
pmin

fmin



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Evaluation – Performance Bugs
• Internal Bugs

• Performance bugs inside the main binary

• External Bugs
• Performance bugs outside the main binary

23



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Evaluation – Performance Bugs
• Internal Bugs

• Performance bugs inside the main binary

• External Bugs
• Performance bugs outside the main binary

24



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Evaluation – Performance Bugs
• Summary : The root causes of all our evaluation cases are 

caught in the top 11 costly calling contexts.

• The distance between costly functions and the patched functions 
differs depending on the types of bugs and application semantics.

• IntroPerf assists the patching process by presenting top ranked costly 
calling contexts and functions.

25

(a) Apache 45464

(b) MySQL 15811

(c) MySQL 49491 (f) 7zip S1

(g) 7zip S2

(h) 7zip S3

(i) 7zip S4

(d) ProcessHacker 3744

(e) ProcessHacker 5424



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Evaluation – Coverage
Q2: What is the coverage of program execution captured by 
system stack traces?

• We measured how much dynamic program state is covered by stack 
traces in two criteria: dynamic calling contexts, function call instances

• We used a dynamic program instrumentation tool, Pin, to track all 
function calls, returns, and system calls and obtain the ground truth.

• Context switch events are simulated based on a reference to 
scheduling policies of Windows systems [Buchanan97].

• Three configurations are used for evaluation.
1. System calls
2. System calls with a low rate context switch events (120ms)
3. System calls with a high rate context switch events (20ms)

26



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Evaluation – Coverage
• Coverage analysis of three applications: Apache, MySQL, and 

7zip
• System call rate: 0.33~2.78% for Apache, 0.21~1.48% for MySQL, 

0.11~5.03% for 7zip

• Coverage for all:
• Calling contexts: 5.3~49.4%
• Function instances: 0.6~31.2%

• Coverage for top 1% slowest functions:
• Calling contexts : 34.7~100% 
• Function instances : 16.6~100%

• Summary: There is a significantly high chance to capture 
high latency functions which are important for 
performance diagnosis.

27



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Evaluation - Performance
Q3: What is the runtime overhead of IntroPerf?

• Evaluation of Windows ETW’s performance for generating stack 
traces of three applications: Apache, MySQL, and 7zip

• Tracing overhead
• Stack traces on system calls: 1.37~8.2%
• Stack traces on system calls and context switch events: 2.4~9.11%

• Reasonable to be used in a post-development stage

28

0.99 0.92 0.960.98 0.91 0.93

0

0.2

0.4

0.6

0.8

1

7zip Apache MySQL

Pe
rf
or
m
an

ce

Native

Syscall

Syscall+CTX



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Conclusion
• IntroPerf provides a transparent performance introspection technique 

based on the inference of function latencies from system stack traces.

• We evaluated IntroPerf on a set of widely used open source software 
and automatically found the root causes of real world performance 
bugs and delay-injected cases.

• The results show the effectiveness and practicality of IntroPerf as a 
lightweight performance diagnosis tool in a post-development stage.

29



IntroPerf: Transparent Context-Sensitive Multi-layer Performance Inference using System Stack Traces

Thank you

30


