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Deep Learning Systems in the Cloud

• Deep Learning (DL) systems are widely used
• Face recognition, intelligent personal assistants, object detection, etc

• Cloud platforms are popular for running DL services
• Cost reduction, scalability, flexibility
• MLaaS competition: AWS, Google Cloud, MS Azure, etc
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Data Breaches and Untrusted Environment in the cloud

• Sophisticated data breaches 
in the cloud

• Emergence of cyber attacks stealing/
manipulating ML data
• Model inversion attacks
• Neural net. Trojan’ing

• Untrusted computing environment
• Cloud provider and tenants
• Compromised VM/container instances
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Protecting Deep Learning using Intel SGX
• Intel Software Guard Extensions (SGX)

• Enclave: a hardware-protected memory region
• Memory protection against privileged software (e.g., Hypervisor, OS)
• Can protect ML program, model, and data from attacks
• Availability in the cloud: IBM Cloud Computing Shield, MS Azure 

Confidential Computing
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Limitation of SGX
• Runtime overhead remains to be a problem

• EPC (Enclave Page Cache): 128 MB (~92MB after metadata for all enclaves) 
• DL with SGX: Large memory, 4-23x prediction time in Linux
• Frequent EPC page swapping leads to significant performance degradation
• EPC thrashing: EPC memory is shared by all enclaves
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Models # Layers
Peak mem 

size (bytes)
Execution time (sec)

Non-SGX SGX

AlexNet 13 274 M 1.03 21.56

ResNext152 204 566 M 6.88 29.23

DenseNet201 304 376 M 2.54 18.82

InceptionV3 145 337 M 8.34 38.63

VGG16 24 1,121 M 7.43 117.79

(>128M)



Vessels: Efficient and Scalable DL with SGX

• Goal: Minimize memory footprint of DL
• Reduce the memory size of DL prediction enclave
• Efficiency and scalability close to non-SGX prediction
• Target : CPU-only SGX computation, DL prediction system
• No accuracy loss (vs. compression and pruning)

• Our approach 
• 1. Profile memory usage of DL: Redundancy discovered
• 2. DL framework with SGX: Optimize based on profiling

• Memory usage planning
• On-demand parameter loading
• EPC-aware scheduling
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Memory Usage Profiling of DL Prediction
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Memory Usage Planning

• Optimized memory pool
• One single memory buffer shared by all layers
• Recycled for high memory reusability
• Reduces page swapping significantly (minimal changes to working set)  
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On-demand Parameter Loading
• Model params are partially loaded in an on-demand fashion

• Model parameters are assigned to a specific layer
• Identify the in-file location of the model parameters for each layer
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EPC-aware Prediction Scheduling

• Concurrent enclaves with multiple cores?
• A production DL system: receives a large number of prediction requests
• EPC is not scalable

• Enclave scheduling with an EPC-commit upper bound 
• Create a new enclave only if the memory usage will not exceed the bound
• Estimate the EPC usage before launching it
• Avoid EPC thrashing
• Requests are added into a FIFO queue if it has to wait
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Evaluation

• Implementation
• Darknet DL framework
• Docker-based 

• Environmental setup: 
• 9 pre-trained DL models (AlexNet, VGG16, etc) 
• Prediction dataset from ImageNet 

• Experiments
• Single prediction
• Concurrent predictions
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Evaluation – Single Prediction
• Compared to the baseline SGX system
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Models Peak EPC 
Reduction

Secure Paging 
Reduction

Latency 
Improvement

AlexNet 89.5% 100% 94.01%

ResNet101 88.1% 100% 69.81%

ResNet152 91.2% 100% 66.90%

DenseNet201 88.8% 100% 63.02%

ResNext152 89.6% 100% 69.47%

Darknet53 80.6% 100% 69.37%

InceptionV3 85.4% 100% 57.44%

VGG16 86.1% 50.53% 57.44%

YoloV3 73.2% 17.92% 18.89%



Evaluation – Concurrent Predictions
• Based on # of processed requests for 100 minutes compared to 

baseline
• Vessels-S: with EPC-aware scheduling, Vessels-M: EPC usage optimization 

only
• Improvement : 131% for Vessels-M, 195% for Vessels-S (on average)
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Conclusion

• Systematic study on EPC usage of current DL prediction 
systems and Discovery of the inefficiency

• Vessels: Efficient and scalable DL prediction with full SGX 
protection

• 90% EPC footprint reduction per enclave and 
195% higher throughput with concurrent enclaves

• No functionality or accuracy loss
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Thank you
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