### Vessels: Efficient and Scalable Deep Learning Prediction on Trusted Processors

<u>Kyungtae Kim</u>\*, Chung Hwan Kim<sup>o</sup>, Junghwan John Rhee<sup>¶</sup>, Xiao Yu<sup>§</sup>, Haifeng Chen<sup>§</sup>, Dave (Jing) Tian<sup>\*</sup>, Byoungyoung Lee<sup>1</sup>

> \*Purdue University, °University of Texas at Dallas, <sup>¶</sup>University of Central Oklahoma, <sup>§</sup> NEC Labs America, <sup>1</sup>Seoul National University







SEOUL NATIONAL UNIVERSITY

### **Deep Learning Systems in the Cloud**

- Deep Learning (DL) systems are widely used
  - Face recognition, intelligent personal assistants, object detection, etc
- Cloud platforms are popular for running DL services
  - Cost reduction, scalability, flexibility
  - MLaaS competition: AWS, Google Cloud, MS Azure, etc



### **Data Breaches and Untrusted Environment in the cloud**

- Sophisticated data breaches in the cloud
- Emergence of cyber attacks stealing/ manipulating ML data
  - Model inversion attacks
  - Neural net. Trojan'ing
- Untrusted computing environment
  - Cloud provider and tenants
  - Compromised VM/container instances



The Year 2017 has so far witnessed some data slip-ups from the worlds top cloud storage providers and the details are as follows-

### **Protecting Deep Learning using Intel SGX**

- Intel Software Guard Extensions (SGX)
  - Enclave: a hardware-protected memory region
  - Memory protection against privileged software (e.g., Hypervisor, OS)
  - Can protect ML program, model, and data from attacks
  - Availability in the cloud: IBM Cloud Computing Shield, MS Azure Confidential Computing



### Limitation of SGX

- Runtime overhead remains to be a problem
  - EPC (Enclave Page Cache): 128 MB (~92MB after metadata for all enclaves)
  - DL with SGX: Large memory, 4-23x prediction time in Linux
  - Frequent EPC page swapping leads to significant performance degradation
  - EPC thrashing: EPC memory is shared by all enclaves

| Medele      | # Layers | Peak mem<br>size (bytes) |         | Execution time (sec)      |        |
|-------------|----------|--------------------------|---------|---------------------------|--------|
| Models      |          |                          |         | Non-SGX                   | SGX    |
| AlexNet     | 13       |                          | 274 M   |                           | 21.56  |
| ResNext152  | 204      |                          | 566 M   | <b>(&gt;128M)</b><br>6.88 | 29.23  |
| DenseNet201 | 304      |                          | 376 M   | 2.54                      | 18.82  |
| InceptionV3 | 145      |                          | 337 M   | 8.34                      | 38.63  |
| VGG16       | 24       |                          | 1,121 M | 7.43                      | 117.79 |

### Vessels: Efficient and Scalable DL with SGX

- Goal: *Minimize memory footprint of DL* 
  - Reduce the memory size of DL prediction enclave
  - Efficiency and scalability close to non-SGX prediction
  - Target : CPU-only SGX computation, DL prediction system
  - No accuracy loss (vs. compression and pruning)
- Our approach
  - 1. Profile memory usage of DL: Redundancy discovered
  - 2. DL framework with SGX: Optimize based on profiling
    - Memory usage planning
    - On-demand parameter loading
    - EPC-aware scheduling

### **Memory Usage Profiling of DL Prediction**



\**IA* = *Intermediate Activations* 

## Memory Usage Planning

#### Optimized memory pool

- One single memory buffer shared by all layers
- Recycled for high memory reusability
- Reduces page swapping significantly (minimal changes to working set)



### **On-demand Parameter Loading**

- Model params are *partially loaded* in an on-demand fashion
  - Model parameters are assigned to a specific layer
  - Identify the *in-file* location of the model parameters for each layer



## **EPC-aware Prediction Scheduling**

- Concurrent enclaves with multiple cores?
  - A production DL system: receives a large number of prediction requests
  - EPC is not scalable
- Enclave scheduling with an *EPC-commit upper bound* 
  - Create a new enclave *only if* the memory usage *will not* exceed the bound
  - Estimate the EPC usage *before* launching it
  - Avoid EPC thrashing
  - Requests are added into a FIFO queue if it has to wait

## **Evaluation**

- Implementation
  - Darknet DL framework
  - Docker-based
- Environmental setup:
  - 9 pre-trained DL models (AlexNet, VGG16, etc)
  - Prediction dataset from ImageNet
- Experiments
  - Single prediction
  - Concurrent predictions

## **Evaluation – Single Prediction**

• Compared to the baseline SGX system

| Models      | Peak EPC<br>Reduction | Secure Paging<br>Reduction | Latency<br>Improvement |
|-------------|-----------------------|----------------------------|------------------------|
| AlexNet     | 89.5%                 | 100%                       | 94.01%                 |
| ResNet101   | 88.1%                 | 100%                       | 69.81%                 |
| ResNet152   | 91.2%                 | 100%                       | 66.90%                 |
| DenseNet201 | 88.8%                 | 100%                       | 63.02%                 |
| ResNext152  | 89.6%                 | 100%                       | 69.47%                 |
| Darknet53   | 80.6%                 | 100%                       | 69.37%                 |
| InceptionV3 | 85.4%                 | 100%                       | 57.44%                 |
| VGG16       | 86.1%                 | 50.53%                     | 57.44%                 |
| YoloV3      | 73.2%                 | 17.92%                     | 18.89%                 |

12

# **Evaluation – Concurrent Predictions**

- Based on # of processed requests for 100 minutes compared to baseline
  - Vessels-S: with EPC-aware scheduling, Vessels-M: EPC usage optimization only
  - Improvement : 131% for Vessels-M, 195% for Vessels-S (on average)



## Conclusion

- Systematic study on EPC usage of current DL prediction systems and Discovery of the inefficiency
- Vessels: Efficient and scalable DL prediction with full SGX protection
- 90% EPC footprint reduction per enclave and 195% higher throughput with concurrent enclaves
- No functionality or accuracy loss

### Thank you