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Abstract

Concurrency bugs might be one of the most challenging soft-
ware defects to detect and debug due to their non-deterministic
triggers caused by task scheduling and interrupt handling.
While different tools have been proposed to address concur-
rency issues, protecting peripherals in embedded systems
from concurrent accesses impose unique challenges. A naive
lock protection on a certain memory-mapped I/O (MMIO)
address still allows concurrent accesses to other MMIO ad-
dresses of a peripheral. Meanwhile, embedded peripherals
such as sensors often employ some internal state machines to
achieve certain functionalities. As a result, improper locking
can lead to the corruption of peripherals’ on-going jobs (we
call transaction corruption) thus corrupted sensor values or
failed jobs.

In this paper, we propose a static analysis tool namely
PASAN to detect peripheral access concurrency issues for
embedded systems. PASAN automatically finds the MMIO
address range of each peripheral device using the parser-ready
memory layout documents, extracts the peripheral’s internal
state machines using the corresponding device drivers, and
detects concurrency bugs of peripheral accesses automatically.
We evaluate PASAN on seven different embedded platforms,
including multiple real time operating systems (RTOSes) and
robotic aerial vehicles (RAVs). PASAN found 17 true positive
concurrency bugs in total from three different platforms with
the bug detection rates ranging from 40% to 100%. We have
reported all our findings to the corresponding parties. To
the best of our knowledge, PASAN is the first static analysis
tool detecting the intrinsic problems in concurrent peripheral
accesses for embedded systems.

1 Introduction

Concurrency bugs might be one of the most challenging soft-
ware defects to detect and debug due to their non-deterministic
triggers caused by task scheduling and interrupt handling.
They not only lead to intermittent unexpected system behav-
iors but also contribute to attack surfaces. For instance, the

Dirty Cow [1] vulnerability caused by a race condition in the
memory subsystem enables privilege escalations within the
Linux kernel. The race condition bug in VMware Tools on
Windows 10 [17] causes privilege escalations in the virtual
machines. The most recent privilege escalation vulnerabil-
ity [16] in Android was caused by a race condition in the
binder. Another race condition within BIND [9] allows a re-
mote attacker to carry out Denial-of-Service of DNS servers.
In fact, a simple keyword search for “race condition” in the
CVE database shows 862 entries [10].

Multiple approaches have been proposed to address concur-
rency issues including static analysis [33,40,50,79], dynamic
analysis [83,84], and hybrid analysis [54,55,62,73]. However,
protecting peripheral devices' in embedded systems from
concurrent accesses imposes unique challenges. A naive lock
protection on a certain memory-mapped I/O (MMIO) address
still allows concurrent accesses to other MMIO addresses of
a peripheral. In other words, unless there is a global lock for
this peripheral and every MMIO access to the peripheral is
protected by the same lock, race conditions still can exist on
the peripheral.

Meanwhile, embedded peripherals often employ some in-
ternal state machine transitions to achieve a functionality. For
instance, a sensor might need to go through different internal
states” to accomplish one sensor read operation. We define
such a specific sequence of internal state machine transitions
as a transaction. Accordingly, the device driver often needs
to access different MMIO addresses of the peripheral and
even sleep in between to follow the peripheral’s internal state
machine transition. Note that unlike typical critical section
protection, where sleep is excluded or even forbidden (e.g.,
spinlocks), the sleep here gives the embedded peripheral time
to finish its job and corresponds to the part of the internal
state machines (e.g., wair).

As aresult, an effective concurrent peripheral access pro-
tection means the protection (locking) of both the MMIO

"'We will also use simply peripherals in this paper interchangeably.
2e.g., receive_cmd: receiving a command, wait: waiting for an ongoing
job completion, and return_res: returning the job result.
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address range and the internal state machine transition of the
peripheral for embedded systems. Unfortunately, none of the
existing tools mentioned above acknowledges this unique con-
current protection requirement of embedded peripherals, and
fails to detect potential concurrency bugs. Improper locking
finally leads to the corruption of peripheral’s on-going jobs,
thus corrupting sensor values or failing jobs. We call such
corruption of jobs as a transaction corruption.

In this paper, we propose PASAN (short for Peripheral
Access SANitizer), a static analysis tool to detect periph-
eral access concurrency bugs for embedded systems. PASAN
learns the MMIO address range of each peripheral device au-
tomatically using the memory layout documents. To gain the
knowledge of the internal state machines, PASAN analyzes
different device drivers to extract state machine models based
on the correlation between device drivers and target peripher-
als. Leveraging the MMIO address ranges and internal state
machines, PASAN finally detects the potential concurrent pe-
ripheral accesses and generate bug reports automatically.

We have evaluated PASAN on seven embedded platforms,
including multiple real time operating systems (RTOSes) and
robotic aerial vehicles (RAVs). PASAN has found 17 true pos-
itive concurrency bugs in total among three platforms with
the bug detection rates ranging from 40% to 100%. We have
reported all of our findings to the corresponding parties. To
the best of our knowledge, PASAN is the first static analysis
tool detecting the intrinsic problems in concurrent peripheral
accesses for embedded systems. We summarize our contribu-
tions as follows.

* We analyze the unique challenges in concurrent peripheral
access protection in embedded systems and define the cor-
rect protection to consider both of the MMIO address range
and the internal state machines of peripherals at the same
time.

* We design and implement PAS AN, a static analysis tool to
detect potential concurrency bugs for peripheral accesses
in embedded systems. PASAN parses memory layout docu-
ments to extract MMIO address ranges automatically, learns
the internal state machines by analyzing device drivers, and
detects concurrency bugs by combining multiple underly-
ing techniques of the MMIO address range identification,
transaction abstraction, points-to analysis, and lockset anal-
ysis.

* We validate the capabilities of PASAN by evaluating its
effectiveness on real-world embedded platforms, and dis-
covering a total of 17 concurrency bugs in three different
platforms.

2 Background and Motivation

Concurrency protection for peripheral accesses is a general
practice for device driver writers on general-purpose operat-
ing systems such as Linux. For instance, in a Multi-Function

retu_write ( retu_dev *rdev, u8 reg, ulé6 data)

ret;
mutex_lock (&rdev->mutex) ;

ret = regmap_write (rdev->regmap, reg,
mutex_unlock (&§rdev->mutex) ;

data) ;

ret;

OO 0NN W —

}

Listing 1: A MFD device write function within the Linux
kernel 5.4 protected by a mutex.

SPI

Bus- ' Select .

Level Data RW
Peripheral Lock
Peripheral- ' ﬂRead ' Road
Level b
% @ Value

1

LIS3DH
Sensor

SD Card
Controller

Figure 1: Simplified motivating example of state machines
with SPI and attached peripherals.

Device (MFD) driver, a write function is protected via a mutex
preventing concurrent accesses to the device as shown in List-
ing 1. Unfortunately, these simple concurrency protections
fail on embedded systems due to the intrinsic states of bus
types and embedded peripherals. Take Figure 1 as an exam-
ple, where an LIS3DH sensor and an SD card controller are
attached to an Serial Peripheral Interface (SPI) bus. A naive
concurrency protection for any operations on these periph-
erals or the bus does not protect the internal state machines
of these devices, leading to a job failure, data loss, etc. We
note that these internal state machines exist on both embed-
ded buses and peripherals. We define a complete transition
of these bus- and peripheral-level internal state machines as
a transaction to reflect its atomic requirement. Once such
unprotected states and corresponding transactions are iden-
tified, attackers may exploit this attack surface and trigger
unexpected bus- or peripheral-level state machine transition
(e.g., via network interface) to cause security or safety critical
issues.

Bus-Level State Machines. The SPI bus in Figure 1 is an
I/O port controlling two attached peripheral devices. To com-
municate with any device, the bus needs to: (i) select the slave
device and (ii) read/write data from/to the device. These two
steps represent the internal state machines of this bus. Now
imagine step (i) is done by thread A, which is going to send
a command to the LIS3DH sensor. Simultaneously, thread B
makes the SPI bus choose another slave device, i.e., the SD
card controller. In this case, thread A’s command will then
be redirected to another slave device due to the transaction
corruption of SPI caused by concurrent bus accesses. As a re-
sult, thread A never gets the response from the sensor because
the transaction corruption leads to an erroneous redirection
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Table 1: Comparison of concurrency bug detection ap-
proaches. The “Hybrid” analysis approach is based on both
static and dynamic analysis; the “Algorithmic” indicates a
theoretical approach without actual implementation; and the
“Manual” approach requires manual efforts to detect (or pre-
vent) concurrency bugs.

Analysis Automatic | Memory Address Transaction
Work . . Range
Approach Detection | Objects Aware
Aware
Lamport . .
timeslanf)ps [60] Algorithmic v
Vector clock [66] Algorithmic v
Esterel [36] Manual v
Rust [65] Manual v
VCC [42] Manual v
VeriFast [32] Manual v
RacerX [50] Static v v
RELAY [79] Static v v
Vojdani et al. [78] Static v v
Chen et al. [40] Static v v
DSAC [33] Static v v
Polyspace [24] Static v v
Separation .
logpic 169] Static v v
Mthread [20] Static v v
Coverity [15] Static v v
Infer [21] Static v v
Flawfinder [19] Static v v
CodeSonar [13] Static v v
ProRace [84] Dynamic v v
Cruizer [83] Dynamic v v
Hellgrind [67] Dynamic v v
ThreadSanitizer [73] Hybrid v v
RaceMob [55] Hybrid v v
LockDoc [62] Hybrid v v
Razzer [54] Hybrid v v
PASAN [ Static ] v/ [ v T v ] v/

of the requested job. Note that putting a lock only on the
step (i) will not eliminate the concurrency bug. To guarantee
the exclusive access to the SPI bus, we need to protect the
bus-level state machines, as denoted as Bus Lock (i.e., a blue
box) in Figure 1.

Peripheral-Level State Machines. Embedded peripherals
are often memory mapped within an embedded system and
have their own internal state machines. As shown in Figure 1,
the LIS3DH sensor (accelerometer) contains four states be-
sides the init state. To read a value from the sensor, a thread A
starts with a read command via writing into a memory mapped
/O (MMIO) address, which puts the sensor into the read cmd
state. The sensor’s internal state machine then transits to the
wait state since the command processing takes some time
depending on the sensor’s working frequency (e.g., S0Hz).
Now imagine another thread B sends a command to the sensor
during the wait state. Due to such a transaction corruption,
the sensor might produce an unexpected result, e.g., corrupted
three-axis acceleration values, leading to an accident if it is
used by a robotic vehicle. Similarly, putting a lock only on
the state sending a command to the sensor cannot eliminate
this concurrency bug. To achieve an exclusive access to a
peripheral, we need to protect the peripheral-level state ma-
chines, e.g., all the four states of the sensor and all the three
states of the SD card controller, as denoted as Peripheral Lock
in Figure 1.

There have been a large body of the prior approaches for
detecting concurrency bugs [13,15,19-21,24,32,33,36,40,
42,50,54,55,60,62,65-67,69,73,79,83,84]. As summarized
in Table 1, most of them (classified as “Static”, “Dynamic’
and “Hybrid” in the analysis approach column) have not con-
sidered the concurrency issues caused by the race conditions
in the internal state machines within bus and peripheral lev-
els [13,15,19-21,24,33,40,50,54,55,62,67,69,73,79,83,84].
Furthermore, other works (classified as “Manual” in Table 1)
require to manually modify source code [36,65] or insert an-
notations for analysis [32,42] while relying on users to fully
understand peripheral device operations. The other works
(classified as “Algorithmic) even require the redesigning
of the entire code base [60, 66]. This paper aims to detect
a new class of concurrency bugs caused by the transaction
corruption that has never been considered before PASAN —
an address-range-aware and transaction-aware concurrency
detection tool for embedded systems. In PASAN, we solve
three main challenges:

5

¢ C1: How to find a peripheral’s MMIO address range
automatically? We note that a naive protection on a single
MMIO address operation is not enough due to the intrinsic
behavior of the internal state machines. We need to know
the whole MMIO address range given a peripheral, and lock
the whole range to protect a transaction of the peripheral.

¢ C2: How to find a peripheral’s transaction scope auto-
matically? Recall that a transaction is essentially a com-
plete transition of the internal states. To protect a transac-
tion, we need to know where the transaction starts and ends
within the code, and lock the whole transaction to protect
the internal state machines.

* C3: How to use MMIO addresses and transaction
scopes to find bugs automatically? With the above knowl-
edge, we have an opportunity to detect concurrency issues
of peripherals. We need a way to explore as many concur-
rency sources as possible while reducing false positives.

Usage Scenarios and Required Expertise. PASAN is an
automatic tool that detects not just typical concurrency bugs,
but specific concurrency bugs with transaction corruptions.
Therefore, it does not assume users to have certain expertise.
However, we expect the developers who respond to PASAN’s
bug report to have knowledge about in (1) embedded sys-
tem device driver programming, (2) multi-threading, (3) race
condition (e.g., lock/unlock usage), and (4) peripheral device
data sheets. The aforementioned background is essential to
understand the bugs and fix the race conditions.

We believe PASAN is particularly useful when appropri-
ate dynamic device driver concurrency analysis tools are not
available. This is quite common in the domain of embed-
ded systems because of either the inability to instrument the
related hardware devices (e.g., the peripheral device or the tar-
get board) for analysis or the unavailability of corresponding
dynamic analysis frameworks. For instance, Hellgrind (part
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of Valgrind [67]) cannot run on an RTOS, and QEMU [35]
supports only a few boards and peripherals. Moreover, even
state-of-the-art dynamic analysis tools have limited analysis
coverage; it is hard for them to uncover concurrency bugs
due to their intrinsic triggering conditions [55]. More impor-
tantly, they cannot find concurrency bugs with transaction
corruptions.

3 Design

Concurrent memory accesses which do not consider the
internal processing states of peripherals can lead to con-
currency bugs. These bugs result in undefined behavior
due to the generation of incorrect results or operation fail-
ures. We propose PASAN which provides a device-agnostic
framework to detect such concurrency bugs. Different from
the detection techniques in the prior art (that focuses on
preventing concurrent accesses to certain program vari-
ables [33, 40, 50, 54, 55, 62,73, 79, 83, 84]), PASAN takes
a transaction-aware and address-range-aware concurrency
bug detection approach which has resulted in the discovery
of novel concurrency bugs in peripheral device transactions.

Figure 2 presents the overall architecture of PASAN frame-
work. PASAN takes three inputs: (1) the source code of the
host firmware which will compile into the LLVM bitcode [61],
(2) the host firmware’s memory layout including MMIO ad-
dress ranges, and (3) the list of the library functions utilized
by the host firmware. Then PASAN proceeds through the fol-
lowing steps to generate the concurrency bug report as the
output automatically without requiring any user intervention
and expertise. This report contains: (i) MMIO access instruc-
tions causing concurrency bugs, (ii) inferred transaction spans,
and (iii) lock objects and their spans if they are enforced. For
developing the rectified device driver, PASAN requires an
expert to deal with false positives and fix bugs as discussed in
Section 2.

1. MMIO Address Range Identification (Section 3.1):
First, PASAN parses the memory layout documents to
identify the address ranges of MMIOs through which
peripheral devices are attached to the host. By enabling
the automated mapping of the accessed addresses to the
corresponding MMIOs, this step plays an important role

Figure 2: The architecture of PASAN.

(in Step 4) in identifying the instructions belonging to
the same transaction. As such, this step addresses the
first aforementioned challenge (C1 in Section 2).

2. Target Function Identification (Section 3.2): Then, by
analyzing the target LLVM bitcode, PASAN identifies
the functions (e.g., multi-process, multi-thread, lock, and
interrupt management functions) which are relevant for
analyzing concurrently executable functions.

3. Concurrency Analysis (Section 3.3): In this step,
PASAN first identifies the instructions which can be ex-
ecuted concurrently. Out of those instructions, PASAN
identifies the existing locked instructions (which are exe-
cuted exclusively) via the context-sensitive lockset anal-
ysis [79]. Unlike the prior art, PASAN also considers the
operations of interrupt handlers.

4. Transaction Span Extraction (Section 3.4): Next,
PASAN identifies all of the transaction spans, i.e., start
and end pair of instructions belonging to one complete
transaction of a peripheral device, by developing a set
of span extraction heuristics. This novel technique to ex-
tract the proper lock spans enables PASAN to determine
transaction-aware access patterns of peripheral devices,
and addresses the second aforementioned challenge (C2
in Section 2). We note that the complete transaction
should ideally be locked (i.e., executed exclusively) to
avoid concurrency bugs.

5. Concurrency Bug Detection (Section 3.5): Finally,
PASAN verifies whether the determined transaction span
(obtained in Step 4) is correctly covered by the existing
lock objects (obtained in Step 3). This addresses the
last aforementioned challenge (C3 in Section 2) and en-
ables the detection of concurrency bugs by automatically
checking whether an MMIO address can be concurrently
accessed in the absence of a proper lock span.

We describe the details of each step of PASAN in the fol-
lowing sections.

3.1 MMIO Address Range Identification

MMIO enables the interaction between a host and periph-
eral devices by assigning a unique and fixed range of mem-
ory addresses for each peripheral. For example, a Universal
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USART’s MMIO boundary addresses

Base (Start) Address End Address
0x40004400 0x400047FF
Offset Register
= 0x00 USART_SR
I ox04 USART_DR
g > 0x08 USART_BRR
é — ox0c USART_CR1
- <|— ox10 USART_CR2
Firmware I ox14 USART_CR3
> 0x18 USART_GTRP

Figure 3: An MMIO address range corresponding to a Uni-
versal Synchronous/Asynchronous Receiver/Transmitter (US-
ART).

Synchronous/Asynchronous Receiver/Transmitter (USART) is
mapped to an address range used to control, receive and trans-
fer data as illustrated in Figure 3. Therefore, in this step, to
detect potential concurrent accesses to the same peripheral,
PAS AN identifies the MMIO address range allocated to each
peripheral.

To identify these address ranges, PAS AN utilizes the mem-
ory layout documents for the host including either the system
view description (SVD) file [8] or the host-specific develop-
ment tool libraries. We note that SVD is preferred because
of the following reasons: (1) SVD contains the formally de-
fined and accurate description of the memory layout of all
MMIO address ranges; (2) SVD can be easily parsed thanks
to its well-defined structure based on the Extensible Markup
Language (XML) format; and (3) SVDs are available for
a majority of hosts equipped with ARM architecture-based
processors (e.g., Cortex-A and Cortex-M).

If an SVD file is not available, PAS AN identifies the MMIO
address ranges using the hard-coded base addresses in host-
specific development tool libraries (e.g., header files). In this
case, PAS AN utilizes two common observations in embedded
domains: (1) each peripheral is mapped to a unique address
range, and (2) each peripheral is accessed by loading a hard-
coded base address. Exploiting these observations, PASAN
determines the MMIO address range for a peripheral starting
with the base address for the peripheral and ending with the
address right before the base address of the closest next periph-
eral. For example, as shown in Figure 3, the MMIO address
range of USART spans from 0x40004400 to 0x400047FF.

3.2 Target Function Identification

In this step, PASAN identifies the functions related to poten-
tial concurrent MMIO accesses and lockings that are essential
to identify concurrently executable code. Specifically, PASAN
handles four types of functions: (1) thread or process manage-
ment functions (e.g., pthread_create and pthread_join)
which are used to analyze the control flow of execution, (2) in-
terrupt handler functions (e.g., I2C_IRQHandler) represent-

ing the starts of interrupt processes, (3) interrupt disable/en-
able functions (e.g., enable_irq) utilized to check whether
interrupt handlers can execute concurrently, and (4) the func-
tions related to locks and unlocks (e.g., mutex_lock) identi-
fying the locked instructions and objects. It is important to
consider interrupts because they can start a new transaction
with a peripheral, thus corrupting the ongoing transaction of
the peripheral. If none of relevant functions is found from the
source file, PASAN looks for architecture-specific assembly
instructions related to interrupts. For example, Cortex-M se-
ries architecture employs cpsid and cpsie instructions for
disabling and enabling interrupts, respectively.

3.3 Concurrency Analysis

In this step, PASAN identifies which code can potentially be
executed concurrently by tracking the code’s starting/stopping
threads and checking the enabling/disabling code of interrupt
handlers. Next, by leveraging lockset analysis, PASAN iden-
tifies which code are not properly locked allowing concurrent
execution of unlocked code by leveraging lockset analysis.
Specifically, by analyzing the LLVM bitcodes and the list
of the relevant library and interrupt handler functions (iden-
tified in Section 3.2), PASAN first identifies the executable
processes, threads and interrupt handlers. Next, PASAN an-
alyzes them to identify the concurrently executable instruc-
tions. Finally, PASAN performs lockset analysis to identify
the instructions that are “locked” to prevent concurrent ac-
cess. We provide the technical details of this analysis below,
and describe them through an example shown in Figure 4
and Figure 5.

Executable Processes, Threads, and Interrupt Han-
dlers. To infer this information, PASAN generates the call
graph via points-to analysis [76], which is an established static
analysis technique for identifying which memory locations
the pointer variables can reference. Then, PASAN gathers
the list of entry functions of processes, threads, and interrupt
handlers. Starting from the entry function of the main pro-
cess, PASAN finds instructions which call process and thread
creation functions. Next, PASAN finds newly created func-
tions from the arguments of these function call instructions.
If such arguments are variables, PASAN finds the possible
functions pointed by those variables via points-to analysis.
One example is main function calling pthread_create with
I0ThreadEntry (the entry function) as the argument.

Concurrently Executable Code. = PASAN identifies the
concurrently executable code by analyzing the instructions
corresponding to different processes and threads [47]. In this
analysis, PASAN first discovers the life span of each pro-
cess/thread by tracking its identifier via points-to analysis. A
life span usually starts with the identifier initialized by the
process/thread creation function, and ends when the identifier
is passed back to the function after the process/thread ter-
mination function. For instance, the functions waitpid and
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void @spi_cmd() {

call @mutex_lock(%lock1);
o\

store i32 0x10, i32* 0x4000740
mutex_unlock(%lock1);

;:-r:.lil @mutex_lock(%lock?2);
%10 = load 32, i32* 0x40007404
call @mutex_unlock(%lock2);

}
Figure 4: Code snippets for locked MMIO access instructions.

1

MMIO Access
Instructions

store i32 0x10,

%10 = load i32,
i32* 0x40007400 i32* 0x40007404

(Spi_cmd, csid: 1233 | spi_cmd, csld: 1233

Thread1 |j sd_write, csld: 798 sd_write, csld: 798
Call  [flog_z, csld: 622 1 |log_z, csld: 622
Stack [l update_z, csld: 210 | | update_z, csld: 210

Trg:ﬁad ‘E‘ﬂ"f_s'i Zcall Sfack main, csld: -
Stack spi_cmd, csld: 1233 spi_cmd, csld: 1233

List | Thread2 | sd_write, csld: 999
Call log_cmd, csld: 633 log_cmd, csld: 633
Stack | exe_cmd, csld: 30 exe_cmd, csld: 30
I0ThreadEntry, csld: - | IOThreadEntry, csld: -

sd_write, csld: 999

Figure 5: Locked MMIO access instructions in different
thread call stacks.

pthread_join may denote the end of a process and thread re-
spectively. We obtain the concurrently executable code by de-
tecting the overlap of the life spans of different processes and
threads. For instance, in Figure 4, we observe that the store
and load instructions are executed whenever the spi_cmd
function is executed. In Figure 5, we consider that the two
overlapping threads (i.e., Thread 1 corresponding to the main
function, and Thread 2 corresponding to the I0ThreadEntry
function) call the spi_cmd function. Then, PASAN reports
both load and store instructions (that are parts of a single
transaction that must be atomically executed) as concurrently
executable when those threads run simultaneously.

Lockset Analysis. After analyzing the lock/unlock and in-
terrupt enable/disable functions (identified in Section 3.2),
and the list of concurrently executable instructions (obtained
above), PASAN identifies the lock objects used to lock in-
structions, and the lock span of each lock object, i.e., the start
(using a lock function) and the end (using an unlock func-
tion) of the lock object.

For example, in Figure 4, the store instruction is placed
between the mutex_lock and mutex_unlock functions with
a lock object lock1. Similarly, a lock object called 1ock?2 is
used for the 1oad instruction. However, in spite of these locks,
different threads (i.e., Threads 1 and 2 in Figure 5) can con-
currently execute these locked instructions because different
locks are used for the two instructions. To detect such cases,
PASAN performs context-sensitive analysis of the complete
call stack. Such call stack shows (1) the called functions on
the stack and (2) the call instruction’s unique identifier (csld)
of its callee in a bottom-up fashion. As shown in Figure 5,

these different call stacks help identify the potential threads
which can execute concurrently.

In addition to detecting typical lock objects, PASAN also
takes enabling and disabling of interrupts into account by
considering them as lock and unlock functions respectively.
In fact, the interrupt control flag can be considered as a virtual
global lock object preventing interrupts from concurrent exe-
cutions. PASAN also identifies recursive function calls, and
avoids the analysis of duplicate functions in a loop. To identify
such recursive function calls, we use the strongly connected
component algorithm [68] employed in other static analysis
systems as well, such as the points-to analysis framework
employed by us [76].

3.4 Transaction Span Extraction

To find concurrency bugs for peripheral devices, PASAN
must consider whether the concurrency can occur for trans-
actions rather than for individual MMIO accesses (discussed
in Section 2). As such, before the concurrency bug detection,
PAS AN must identify transaction spans that are the ranges
of instructions representing transactions.

Specifically, as shown in Figure 5, the usage of different
locks leads to peripheral access concurrency bugs. More im-
portantly, even if the same lock was used, we still could not
guarantee that both the store and the load come from the
same thread. It might be Thread 1 store + Thread 2 load
or Thread 2 store + Thread 1 load. In either case, neither
Thread 1 nor Thread 2 would have the correct response from
the peripheral due to the corruption of each thread’s transac-
tion with the peripheral.

Consequently, we need to detect each transaction initiated
by different threads that can potentially interleave with each
other and cause a transaction corruption. As the first step,
we extract all of the transaction spans in advance. We argue
that although drivers might lack proper locking, their imple-
mentations have to follow the operation instruction of the
peripherals (aka, transaction) to make them work. Otherwise,
these drivers simply would not work, which would be caught
during the development or testing. More importantly, the ex-
tracted transaction spans need to be context-sensitive and
MMIO-address-range-aware. The former provides call stacks
with lock information (if exists); the later tells potential con-
current peripheral accesses from different MMIO addresses
but within the same MMIO address range.

Finding the Peripheral-Access Instructions. PASAN
identifies the peripheral-access instructions by following
the occurrences of the store and load instructions, whose
pointer argument might represent an MMIO access. We take
the following approach to resolve possible address values of
a given pointer variable: PASAN first performs points-to anal-
ysis to find the list of alias variables of the pointer variable. It
then strives to find the constant MMIO address values propa-
gated to such alias variables. This can be done by checking the
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: MMIO Access
Function

: Thread Entry
Function

o

Same lock
on different
call stacks?

SEQ.1 SEQ.2 SEQ.3 SEQ.4 SEQ.5 SEQ.6
Access Operation Write at 0x0 offset Wait Read at 0x4 offset Write at 0x8 offset Write at 0x8 offset Write at 0x8 offset
Purpose Send a Command Wait for a Command Device Data Transfer Data Transfer Data Transfer Done
Ready Response Ready Check
MMIO Access store i32 0x10, call void %10 = load i32, store i32 %9, store i32 %9, store i32 OxFFFFFFFF,
Instructions i32* 0x40007400 @usleep(2000) i32* 0x40007404 i32* 0x40007408 i32* 0x40007408 i32* 0x40007408
spi_cmd, csld: 1233 spi_wait, csld: 811 spi_wait, csld: 811 spi_write, csld: 937 spi_write, csld: 937 spi_done, csld: 997
Thread 1 | sd_write, csld: 798 sd_write, csld: 798 sd_write, csld: 798 sd_write, csld: 798 sd_write, csld: 798 sd_write, csld: 798
Call log_z, csld: 622 log_z, csld: 622 log_z, csld: 622 log_z, csld: 622 log_z, csld: 622 log_z, csld: 622
Stack update_z, csld: 210 update_z, csld: 210 update_z, csld: 210 update_z, csld: 210 update_z, csld: 210 update_z, csld: 210
Thread main, csld: - main, csld: - main, csld: - main, csld: - main, csld: - main, csld: -
S(f:gk spi_cmd, csld: 1233 spi_wait, csld: 811 spi_wait, csld: 811 spi_write, csld: 937 spi_write, csld: 937 spi_done, csld: 997
List Thread 2  sd_write, csld: 999 sd_write, csld: 999 sd_write, csld: 999 sd_write, csld: 999 sd_write, csld: 999 sd_write, csld: 999
Call log_cmd, csld: 633 log_cmd, csld: 633 log_cmd, csld: 633 log_cmd, csld: 633 log_cmd, csld: 633 log_cmd, csld: 633
Stack exe_cmd, csld: 30 exe_cmd, csld: 30 exe_cmd, csld: 30 exe_cmd, csld: 30 exe_cmd, csld: 30 exe_cmd, csld: 30
I0ThreadEntry, csld: - | I0ThreadEntry, csld: - | |IOThreadEntry, csld: - | IOThreadEntry, csld: - | IOThreadEntry, csld: - | IOThreadEntry csld: -

Figure 6: An example of a simple transaction for a peripheral device. The high-level operations are described in the four top

columns. Then, we show transaction spans which should be covered by a respective ideal lock span identified by PASAN at
the bottom with threads’ call stacks. Here, Thread 1 is executed with main as an entry function, and Thread 2 is executed with
I0ThreadEntry as an entry. Both can be executable concurrently.

Algorithm 1 [T4] Transaction Span Extraction Per MMIO Address Range.

Input: Intermediate representation codes (/R), Target MMIO access instruction set
(M1I), Entry and interrupt handler bottom functions (E), Threshold values between
device access instructions (T'hr)

Output: Extracted transaction spans (L)

1: function TRANSACTIONSPANEXTRACTION(IR, Thr,MI,E) > Main Function

2:  Initialize L,

3 for e € E do > Iterate all entry functions
4 Initialize cs;

5 cs.PUSH({e,NULL}) > Initialize call stack (cs)
6: L' < RECURSIVEEXTRACTION(cs, Thr,L,IR, Ml e)

7 L + LUDISCONNSPAN(cs, L)

8:  returnL

9: function RECURSIVEEXTRACTION(cs, Thr,L,IR,MI,F)

10:  C <+ GETINSTRUCTIONS(IR,F)
11:  forceCdo

> F is target analysis function
> Analyze each instruction in F

12: if ISINSTBELONGSTOTRANSACTIONSPAN(cs, ¢, MI) then

13: L < EXTENDSPAN(cs, Thr,MI,c,L)

14: else if ISTOOLARGEDISTANCE(L, Thr) then

15: L < DISCONNSPAN(cs, L) > Disconnect a too long transaction span
16: else if ISCALLINST(cs,c,IR) then

17: callees <+ GETNONREPEATEDRECURSIVECALLEES(cs, ¢, IR)

18: L'+ L

19: for ce € callees do > Iterate non-repeated recursive callees
20: Ly« L > To keep the currently analyzed a transaction span
21: cs.PUSH({ce,c}) > Update cs with a callee (ce) and call instruction (c)
22: L;, + RECURSIVEEXTRACTION(cs, Thr,Li,,IR,MI,F)

23: ¢s.POP() > Restore cs
24: L < UPDATELOCKSPAN(L;,,L)

25:  returnL

sequence of updates in each alias variable and backtracking
relevant instructions, i.e., store and load instructions and
value-updating instructions on the constant MMIO address
values (e.g., add and or operations). During the backtracking,
when PASAN finds a constant value for an alias variable, it
maps an MMIO address range covering this constant value
into that alias variable. Finally, the set of (potentially accessi-
ble) MMIO address ranges are mapped to each of the store
and load instructions.

Determining Boundaries of a Transaction. Utilizing the
list of instructions and their accessed MMIO address ranges,
PASAN pursues the intuitive algorithm shown in Algorithm |
to detect the boundaries (start and end) of a transaction. For
each target instruction, PASAN computes a metric called “ac-
cess distance” which is defined as the number of instructions
between the target instruction and the next related instruction

which access the same MMIO address range. We note that
a large access distance indicates that the peripheral device’s
driver code are not executed for a large number of instructions,
which may indicate the end of a transaction between the host
and the peripheral (Line 14-15). As such, PASAN considers
the target instruction and the next related instruction to belong
to the same transaction if the access distance between them
is smaller than a threshold denoted by T hr (Line 12-13). For
example, in Figure 6, the instructions SEQ. 1, 3-6 (as shown
in the “MMIO Access Instructions” row) are determined to
be part of the same transaction. We note that PASAN also
collects thread call stacks as shown in the “Thread Call Stack
List” in Figure 6 to check whether each transaction can be
executed concurrently by different threads. We will explain
how to use call stack information in Section 3.5.

Specifically, PASAN determines whether an MMIO access
instruction belongs to a transaction span (Line 12) if the
following three cases are satisfied.

e Case-1: Peripheral MMIO Wait Pattern: The host employs
a wait instruction (e.g., the sleep function call) when it
needs to wait for the completion of a job requested to the
peripheral. In other words, a wait instruction is a part of
the state machine of an ongoing transaction. Hence, in Fig-
ure 6, PASAN considers the instructions SEQ.1 and SEQ. 2
to belong to the same transaction (part of Line 12-13).

* Case-2: Different Access Distance Thresholds: PAS AN can
encounter a mix of instructions accessing different periph-
erals with different drivers. In such cases, PASAN utilizes
different threshold values for different peripherals. For ex-
ample, to transfer a large amount of data to an Ethernet
card, a device driver may delegate the data copy job to a
direct memory access (DMA) unit. In this case, since it is
usually a temporary, small job, PASAN selects a smaller
threshold value (T hr,) for the access distance instead of the
default longer threshold value (T hr;) (part of Line 12-13).
We will further demonstrate the impact of this threshold in
Section 4 and their effectiveness in Section 5.2.
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SEQ.1 SEQ.2 SEQ.3 SEQ4 SEQ.5 SEQ.6
(a) In-order Access Detail | Write at 0x0 offset Wait Read at 0x4 offset | Write at 0x8 offset | Write at 0x8 offset | Write at 0x8 offset
Transaction Wait for a Command Device Ready Data Transfer
Purpose Send a Command Ready Response Check Data Transfer Data Transfer Done
b) Bu
) ey Lock 1 Lock 2 Lock 2 Lock 2
(c) PASAN's
Complete [ Lock 1 ]
Lock Span

Figure 7: An example of a simple transaction for a peripheral device. The high-level operations are described in (a). Then, we
show the example buggy lock enforcement in (b). Finally, we present the transaction span which should be covered by the proper

lock span in (c).

* Case-3: Write Access Inclusion: PASAN considers an ex-
tracted transaction to be a potential target for a concurrency
bug only if the transaction contains at least one write in-
struction. We note that the host can perform a read instruc-
tion (on a register that an MMIO address is mapped into)
without interacting with any peripheral. In most cases, it
usually does not affect the state machine transition of a
peripheral. However, if we include read-only transactions,
it would cause a large number of false positives because the
status of some peripherals (e.g., timer and USART) are not
volatile, and hence not vulnerable to unprotected concurrent
reads as they maintain their own internal states. Therefore,
we chose to use “write-access-inclusion” heuristic to reduce
the false positive rate of concurrency bug detection in the
next step (Section 3.5).

Handling Call Instruction. Once PASAN starts to analyze
a call instruction, it recursively handles that call instruction
first. During this step, PASAN keeps tracking the call stack
to abide by context-sensitivity (Line 4-5, 21, 23). Other than
that, PASAN needs to handle two challenges: recursive calls
and indirect calls. To prevent repeated recursive function call
analysis, PASAN generates a non-repeated callee list (Line
17) [68]. To handle the case of indirect calls, PASAN first
retrieves the list of callees. If that is a direct call instruction,
there is only one callee in the list. Otherwise, there can be
multiple callees with different call stacks. For that, PASAN
makes copies (corresponding to the number of such callees)
of the transaction under analysis (Line 17-24). Note that these
copied transactions are processed independently to determine
their boundaries.

3.5 Concurrency Bug Detection

Now we describe how PASAN detects concurrency bugs
caused by concurrent transactions of a peripheral. PASAN
takes the following inputs from the previous steps: (1) con-
currently executable instructions, (2) ranges of instructions
locked by certain lock objects, and (3) transaction spans. Then,
PASAN detects which parts of transactions can be concur-
rently executed even with the enforced locks.

We notice that these transaction concurrency bugs prevail
in embedded systems because it is challenging for developers

to correctly enforce every lock span to cover the complete
transaction (we demonstrate two real-world examples in Sec-
tions 5.5 and 5.6). As such, we observe three common charac-
teristics of a buggy lock span as demonstrated in Figure 7: (1)
instructions (e.g., SEQ.1 and SEQ.4) which access different
MMIO addresses are locked separately; (2) an instruction
(e.g., SEQ.2) accessing no MMIO address is not considered
for locking; and (3) a load instruction (e.g., SEQ. 3) perform-
ing a read-only access is not locked. In contrast, PASAN takes
a novel approach combining the following two strategies: the
address-range-aware strategy and transaction-aware strat-
egy guided by the extracted complete transaction spans. We
note that these transaction spans are obtained using Algo-
rithm | in Section 3.4, e.g., the transaction span shown in
Figure 7(c). Without the guidance of the extracted transaction
spans, traditional concurrency bug detectors would either con-
sider it unnecessary to protect some instructions or protect
them with different locks and separate lock spans as shown
in Figure 7(b). Next, we elaborate on how and why the trans-
action spans are related to the concurrency bug detection.

* Address-range-aware strategy: PASAN must check
whether two accessed MMIO addresses are accessed by
the same peripheral. For example, in Figure 7(a), SEQ.1
accesses the memory at an offset of 0x0 from the base ad-
dress, SEQ.3 accesses the memory at offset of 0x4, and
SEQ.4-SEQ. 6 access the memory at an offset of 0x8. With
a naive strategy, only SEQ.4-6 will be considered as ac-
cesses by the same peripheral, and the resulting discon-
nected locks may cause concurrency issues. Hence, by em-
ploying an address-range aware strategy, PASAN detects
SEQ.1, SEQ.3 and SEQ.4-6 can be accessed by the same
peripheral.

» Transaction-aware strategy: PASAN must also check
whether a sequence of instructions belonging to the same
transaction is protected by a single lock span. For example,
in Figure 7, PASAN detects that SEQ. 1 and SEQ.4-SEQ. 6
belong to the same transaction. Note that this strategy also
helps to cover sequences SEQ. 2 (i.e., the wait pattern that
was not considered as a part of a transaction) and SEQ. 3
(detected by the address-range-aware strategy), which are
not normally considered as protection targets in spite of
them being parts of the same transaction spanning from
SEQ.1 to SEQ.6.
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Algorithm 2 Concurrency Bug Detection Per MMIO Address Range.

Input: Mapping an instruction into a set of the possible contexts (Mj,y ), Mapping
a MMIO into a set of transaction spans (M), Mapping an instruction into alias lock
objects (Miock)

Output: Concurrency Bug Report (CR)

1: function CONCURRENCYBUGDETECTION(M s, M;, Moct) > Main Function

Initialize CR;
for T; € M, do > Get one transaction set
for T; € M, do > Get another transaction to make a comparison pair

CR <~ CRUCONCURRENCYBUGANALYSIS(T;, T}, Mingt, Miock)

SPOPID ULEWN

return CR > Get one lock span
function CONCURRENCYBUGANALYSIS(T;, T}, Ming , Miock)
Initialize cr;
for tes; € T; do > Get one transaction with a call stack. c¢s is a call stack
for tm/ €Tjdo > Get another transaction with a call stack
11: if ISCONCURRENTLYEXECUTABLE(tml,,tmj ,M;n) then
12: 8; <= GETLOCKSPAN (fcy; , Miock) > Get locks and their spans in £;
13: i GETLOCKSPAN([L..,.!. JMio) > Getlocks and their spans in fes;
14: if CHECKLOCKSPANANDOBJ(S,,Sj,t,:i,l”/.) == False then
> Check whether a lock protects both transactions
15: cr = crU{les; fes; }

16:  returncr > Return the concurrency bug result for this pair

Algorithm. To detect concurrency bugs, PASAN first identi-
fies the transactions by combining both address-range-aware
and transaction-aware strategies. Then PASAN analyzes con-
currently executable instructions (obtained in Section 3.3) to
check whether the proper lock objects have been employed to
cover the transactions (extracted in Section 3.4).

Algorithm 2 shows the pseudo code of the concurrency
detection mechanism. PAS AN first takes two transactions (de-
noted as 7; and T;) accessing the same MMIO address range
from the transaction list (Line 3-4). Then, PASAN checks
whether 7; and T; can be executable concurrently (Line 7-16).
We note that both transactions can be “identical” (i.e., T; = T})
when they are concurrently executed in two different threads.
For example, two transactions shown in Figure 6 execute the
same MMIO access functions (i.e., sd_write and its callee
functions, such as spi_cmd, as indicated by the same call site
identifier csId). However, those transactions can be executed
concurrently because Thread 1 and Thread 2 (whose entry
functions are main and I0ThreadEntry) concurrently exe-
cute the same transaction in different call stacks and call sites
as described in the “Thread Call Stack List” row. As such,
PAS AN must consider them for concurrency bugs if the locks
are not identical between different call stacks or they do not
cover SEQ.1-6.

As such, PASAN obtains the call stacks from the transac-
tion (denoted as T, and Tcsj- in Line 9-11). If the call stacks
are different, PAS AN needs to check if their threads and their
locksets are different. To determine if their threads are differ-
ent, PASAN first checks the entry functions of Tt; and Tty
(Line 11). If that is true, PASAN obtains (i) lock spans and
(ii) lock objects for MMIO access instructions of T, and Tcs,~
(Line 12-13). Then, PASAN checks whether there is a concur-
rency issue between Ti;; and Tp; (Line 14). Essentially, if the
existing locks do not cover either 7, or TCS]., each of them has
a concurrency bug. Next, if the lock spans cover each of Tg,
and Tcsj, PASAN checks whether both of them are locked by

Table 2: Target embedded platforms. NT: the number of
threads; NI: the number of interrupt handlers; and ND: the
number of compiled device drivers.

Lines of

Platform 0s Version | Compiled | 1" | N7 | NI | ND
All Codes
Code
ArduPilot [11] | ChibiOS | 3.6.10 | 116815 | 2,220,042 | 1 | 54 | 42
RaceFlight [26] | Bare-metal | 06efdc2* | 46,683 | 206,888 | 1 | 36 | 17
RIOT [28] RIOT 201907 | 17378 | 1,542,403 | 3 | 17 | 33
Contiki [14] Contiki 44 12,762 | 553596 | 6 | 15 | 5
TS100 [31] | FreeRTOS |  2.05 20291 | 185026 | 5 | 19 | 8
arbl [2] Baremetal 0.8 5,857 2777 | 1| 11| 5

rusEFI [29]

ChibiOS
Total -

€33798¢c* 89,405 2,302,209 | 14 | 54 4
- 309,191 | 7,063,041 | 41 | 208 | 114

* When there is no proper version (e.g., when the developers have updated the codes, but
have not tagged its version), we provide the commit number from the github repository.

Table 3: The number of peripheral devices attached to respec-

tive MMIOs in each target firmware.
Platform [ SPI | 12C [ UART [ USB | GPIO | IRQ [ Flash [ ADC [ DMA

ArduPilot | 11 10 13 1 2 1 2 1 2
RaceFlight | 2 5 2 1 2 1 2 1 2
RIOT 5 19 1 0 4 1 2 1 1
Contiki 0 0 1 0 2 1 1 0 0
TS100 0 1 1 0 1 2 1 1 1
arbl 0 0 1 0 1 2 1 0 0
rusEFI 0 0 0 1 1 1 1 0 0
Total 18 | 35 19 3 13 9 10 4 6

the identical lock objects. If this is not true, PAS AN considers
this transaction pair can be executable concurrently, which
means they have concurrency bugs. Once T, and T.s; are
determined to have a concurrency bug, the result is updated
in the generated concurrency bug report (Line 5 and 15).

4 Implementation

PASAN mainly targets embedded systems and is designed
to use only static analysis. We use LLVM 7.0 [61] and
SVF 1.6 [76] as the base for our analysis. Peripheral device
address memory layout is extracted from the SVD [8] or
development tool libraries. Overall, our implementation is
composed of over 7K lines of C++ code and various miscella-
neous Python scripts for automation. After the evaluation of
seven target embedded platforms (introduced in Section 5),
we selected the parameters to extract lock spans for transac-
tions (Section 3.4) with the empirical values, Thr; as 5,000
and Thry as 2,000, yielding the highest lock span accuracy
on average as discussed in Section 5.2.

5 Evaluation

We first introduce the target testing platforms (Section 5.1),
and focus our evaluation on answering the questions below:

* Q1: How accurate is the transaction span inference?

* Q2: How effective is PASAN’s concurrency bug detection?

* Q3: How effective is PASAN compared to the existing
approaches?

* Q4: What real-world concurrency bugs are detected?
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Table 4: Summarized results of transaction span extraction.

# of Transaction # of Incorrectly Inferred

Platform Spans Accuracy (%) Transaction Spans

Extracted | Correct Subset | Superset | Mixed

ArduPilot 60 41 68.33 5 6 8
RaceFlight 30 26 86.67 2 2 0
RIOT 41 34 82.93 2 5 0
Contiki 9 8 88.89 0 1 0
TS100 12 11 91.67 0 1 0
grbl 13 8 61.54 4 0 1
rusEFI 18 13 7222 0 5 0
Total 183 141 717.05 13 20 9

5.1 Evaluation Targets

Table 2 summarizes the information about our evaluation
targets of 7 open-source embedded platforms. We selected
this set of platforms with the following criteria: (i) different
running environments (e.g., different RTOSes), and (ii) dif-
ferent peripheral devices (e.g., different sensors). The first
two platforms (i.e., ArduPilot and RaceFlight) are for robotic
aerial vehicles (RAVs), and RIOT and Contiki are RTOSes.
We evaluated RIOT by putting all testing device drivers to-
gether to generate one bitcode file. We evaluated Contiki
with the blink-hello application running multiple threads with
MMIO accesses. TS100 is a soldering iron platform; grbl is
for computer numerical control (CNC) milling controllers;
and rusEFI is used for internal combustion engine control
units. Each platform has lines of compiled code ranging from
5,857 to 116,815, with total lines ranging from 52,777 to
2,302,209, the number of threads ranging from 1 to 11, the
number of interrupt handlers ranging from 11 to 54, and mul-
tiple peripherals ranging from 4 to 42. We note that most of
interrupt handlers execute the simple tasks such as infinite
loop execution (without doing anything), immediate acknowl-
edgement of the interrupt, or a common interrupt handler call
(e.g., a kernel panic handler).

Table 3 shows the types of device drivers used in our evalu-
ation. We note that some device drivers can support different
buses (e.g., SPI and 12C). Furthermore, GPIO can sometimes
act as SPI or I2C according to the configuration. In either
case, we count the number of device drivers individually.

5.2 Transaction Span Extraction Accuracy

As one of the critical steps in the concurrency bug detec-
tion, PASAN identifies the possible transaction spans based
on the extraction approach (Section 3.4) focusing on the in-
structions of transactions which can be executed concurrently
(Section 3.3). The details of extraction accuracy are presented
in Table 4 showing the following information for each target
platform: (1) the number of the extracted transaction spans,
(2) the number of the correctly extracted transaction spans,
(3) the accuracy of the extracted transaction spans, and (4)
incorrectly inferred transactions (e.g., subset, superset and
mixed transaction spans).

To identify the ground truth, we manually inspected
source code for every transaction span. For example, we

look into the function(s) accessing a target device with
a sequence of instructions for a specific purpose (e.g.,
sdcard_spi_read_blocks to read data from an SD card).
Such functions can be called by the external non-driver func-
tions rather than device drivers. Overall the accuracy of
PASAN’s lock span extraction is 77.05% on average ranging
from 61.54% to 91.67%. Several target platforms, RaceFlight,
RIOT, Contiki, and TS100, achieve high accuracy, i.e., over
80%. Other platforms such as ArduPilot, grbl, and rusEFI
show a reasonable accuracy ranging from 60% to 80%.

In terms of incorrectly inferred transaction spans, there are
three categories of partial inferences, which might still be
useful for concurrency bug analysis.

1. Subset transaction span: A subset transaction span
may contain a subset of the complete device access in-
structions, which can cause false negatives and/or addi-
tional inaccurate transaction span generation. The num-
ber of this type of incorrectly inferred spans range from
0 to 5 in Table 4. However, PASAN can still utilize it
to detect concurrency bugs because MMIO access in-
structions in each subset transaction span should also be
executed atomically.

2. Superset transaction span: A superset transaction span
includes potential bug cases along with other instructions.
As PASAN detects concurrency bugs in device access
instructions for any bug case within the span, some of
the superset transaction spans may lead to false positives.
The number of this type of incorrectly inferred spans
range from O to 6 in Table 4.

3. Mixed transaction span: This involves both subset
and superset transaction spans. Therefore, it may lead
PASAN to detect concurrency bugs with false positives
and negatives. The number of this type of incorrectly
inferred spans is from 0 to 8 in Table 4.

There are a couple of reasons why we could not achieve
higher extraction accuracy according to our ground truth study.
In the case with the lowest accuracy, execution of the ap-
plication code (e.g., controller computation or sensor value
conversion code in robotic vehicles) and the peripheral de-
vice management code frequently interleave. This causes our
heuristic distances (discussed in Section 3.4 and 4) to be sub-
optimal because the different level of mixture with application
code varies the optimal distance thresholds leading to incor-
rect transaction span extraction. Another main reason is that
some platforms continue the device initialization steps whose
access patterns are intensive and complex, even after threads
or child processes have started. The initialization steps config-
ure the device and its I/O setting, during which the platforms
interact with diverse peripheral devices and I/Os rather than
running application code. Consequently, our device access
distance threshold values (i.e., the values of Thr; and Thry
mentioned in Section 4) are not optimal in those steps. For
example, we found that ArduPilot hands over certain initial-
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Table 5: Summary of concurrency bugs.

# of False False . # of Affected
#of . o Bug Detection .
Platform Bugs Positive | Positive Rates Deylce
Bugs Rates Drivers
ArduPilot 20 12 60.0% 40.0% 7
RaceFlight 0 0 - - 0
RIOT 9 1 11.11% 88.89% 8
Contiki 0 0 - 0
TS100 1 0 0.0% 100.0% 1
grbl 0 0 - 0
rusEFI 6 6 100.0% 0.0% 0
Total 36 19 - - 16

ization steps to threads and processes communicating with the
dedicated devices during the early execution stages. Finally,
indirect calls to support multiple different I/Os also lead to
low extraction accuracy. e.g., in ArduPilot.

5.3 Concurrency Bug Detection Effectiveness

Ground Truth Study Experiment. We find patches in
RIOT related to the bus-level concurrency bugs in 12C* and
SPI*. Before those patches, there were no locks at all, and
hence any peripheral device attached to either I2C or SPI
bus had concurrency bugs in RIOT. We use those patches as
the ground truth by removing this patch in our RIOT testing.
PASAN found all the 28 concurrency bugs fixed by the patch
with 0% false positive rates. We apply the removed patch
again for the following RIOT testing.

Bug Detection. As shown in Table 5, we evaluate each target
platform on: (1) the number of concurrency bugs, (2) the num-
ber of false positives cases, (3) the bug detection rates, (4) the
false positive rates in the bug detection, and (5) the number of
potentially affected devices. In total, PASAN reported 36 bugs
from ArduPilot, RIOT, TS100, and rusEFI platforms. After
verification, we found that 17 out of 36 reported bugs are true
positives, and the rest 19 cases are false positives. Among the
17 true positive cases, 8 cases are from RIOT. While the patch
mentioned earlier fixed some bus-level concurrency bugs in
RIOT, these 8 are new peripheral-level concurrency bugs. Af-
ter we found aforementioned bugs in RIOT, we checked patch
histories and found that ten peripheral devices had concur-
rency bugs with transaction corruptions’. However, RIOT
developers did not consistently apply the similar patches to
the other peripheral device drivers containing concurrency
bugs. We reported our findings to RIOT developers, and they
acknowledged our findings as bugs®. All the bugs found in
ArduPilot are peripheral-level concurrency bugs. TS100’s
case is a generic concurrency bug on MMIO accesses caused
by interrupt handling. Overall, PASAN achieves bug detection
rates from 40.0% to 100.0%.

3 nttps://github.com/RIOT-0S/RIOT/pull/2323/comnits for
three boards before the patch.
“https://github.com/RIOT-0S/RIOT/pull/2317/commits for nine
boards before the patch.
Shttps://github.com/RIOT-0S/RIOT/pull/2326/commits.
Shttps://github.com/RIOT-0S/RIOT/issues/13444

False Positives. Due to the limitations of static analysis,
PASAN reported 12, 1, and 6 false positive bugs in ArduPilot,
RIOT, and rusEFI, respectively. rusEFI has six transactions
reported as concurrently executable code because employed
points-to analysis [76] treats their locks to be different. In fact,
these locks are the alias of the same lock. For ArduPilot and
RIOT, PAS AN reported two and one incorrect concurrency
bugs, respectively, due to inaccurate transaction span extrac-
tions. We also found that one false positive case was reported
because it did not require waiting for the job completion after
device initialization. Specifically, LSM9DS0, a magnetometer
of ArduPilot reads sensor values iteratively without requesting
a processing job in the device driver. LSMIDS0 was mistakenly
reported due to 12C attached requiring writing accesses to con-
trol the I2C bus. In this case, the peripheral’s internal state
machine is tolerant to potentially buggy concurrent accesses,
although PASAN correctly reports this as potential concur-
rency bugs based on our detection algorithm. Our manual
verification did not reveal any more false alarms. We discuss
about factors causing false positives in Section 6.

5.4 Concurrency Bug Detection Capability
Comparison

We compare PASAN with the existing concurrency bug de-
tection tools to show its effectiveness as summarized in Ta-
ble 6. Our selection of the existing tools was guided by the
following criteria. First, we focus on the comparison with
static analysis tools. This is because dynamic analysis-based
approaches [54,55,62,67,73, 83, 84] require dynamic analy-
sis frameworks, which are not generically applicable to em-
bedded systems except for only a few boards [41, 51, 53].
Second, we do not consider the tools requiring non-trivial
manual efforts such as theoretical algorithms [60, 66] or man-
ual code instrumentation [36, 65]. Finally, we consider the
static analysis tools that are available to use for uncovering
concurrency bugs with transaction corruption’. As such, we
chose Flawfinder [20], Polyspace [24], and Coverity [15].
Flawfinder performs concurrency analysis for generic C/C++
code independent of compilers and target boards. Polyspace
claims that they cover various real embedded systems such as
Nissan car and aircraft autopilot [24,25]. Coverity also claims
to support automotive embedded systems while supporting
embedded system compilers [30].

Table 6 shows the number of true concurrency bugs only
with transaction corruption, and the number of any types
of concurrency bugs reported by each tool. We found that
Flawfinder, Polyspace, and Coverity cannot find any con-
currency bug with transaction corruption. More specifically,
Flawfinder found 265 conventional concurrency bugs (e.g.,

7 For example, a trial version of CodeSonar [13] does not support aca-
demic evaluation; Mthread add-on is working on porting to its recent main
framework [20]; Infer [21] does not support embedded system code since it
ignores compilation commands for embedded systems.
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https://github.com/RIOT-OS/RIOT/pull/2323/commits
https://github.com/RIOT-OS/RIOT/pull/2317/commits
https://github.com/RIOT-OS/RIOT/pull/2326/commits
https://github.com/RIOT-OS/RIOT/issues/13444

Table 6: Summary of the concurrency bug detection perfor-
mance of PASAN in comparison with existing works. T: #
of true concurrency bugs only with transaction corruption,
A: # of all reported concurrency bugs of any types without
manually verifying their correctness.

Target PASAN | Flawfinder [19] | Polyspace [24] | Coverity [15]
Firmware | T[ A | T | A T | A T | A
ArduPilot | 8 | 20 | O 247 0 0 0 0
RaceFlight | 0 | 0 | O 0 0 0 0

RIOT 81 9 10 9 1] 1 0 0

Contiki 0| 0|0 3 0 0 0 0

TS100 1 1 0 0 0 0 0 0

grbl 0| 0 |0 0 0 0 0 0

rusEFI 0] 6 |0 6 0 0 0 0

concurrent file object accesses); Polyspace found one concur-
rency bug caused by a global variable in RIOT; Coverity found
zero concurrency bug although Coverity found the other types
of bugs (e.g., integer overflow). Overall, as shown in Table 6,
unlike PAS AN, the existing tools cannot detect concurrency
bugs caused by peripheral access transactions.

5.5 Case Study I: SD Card Data Corruption

SPI
Bus- ' Select Data
Level Slave RW
SD Card -
Controller
Peripheral-

Level

Peripheral
Lock

CMD
Done

Figure 8: Simplified example of two-layered state machines
of SPI and SD card controller.

RIOT [28] supports a variety of peripherals on diverse em-
bedded systems. One of the supported peripherals is an SD
card controller. Due to the limited number of I/O ports in em-
bedded systems, an SD card controller is frequently attached
to an SPI bus which may already be connected with other
peripherals. We note that RIOT is designed to be a generic
RTOS with a variety of interface options. Unfortunately, be-
cause of design flaws in the exclusive access protection, it is
possible to exploit the control interface and access the con-
troller directly/indirectly. As a result, a concurrency bug could
potentially lead to data loss or corruption such as a missing
SD card access and undesired data transfer to the SD card.

PASAN’s analysis of the existing lock objects and lock
spans corresponding to the controller has revealed two issues:
there is no bus lock for protecting the state machine of SPI,
and there is no peripheral lock spanning the whole transaction
with the controller.

Missing Bus Lock on an SPI.  As shown in the bus-level
box of Figure 8, the SPI takes two states for the data trans-
fer: (1) select a slave device among the attached peripherals,
and (2) perform data read/write operations with the periph-
eral. As such, a concurrency bug can be found by checking
whether there is a lock spanning from (1) to (2). Missing
locks can cause the transferred data to be corrupted or data
to be transferred to different devices unless both (1) and (2)
are performed atomically. In our analysis, PASAN did not
find a lock in either of the two states of the tested embedded
platform revealing its vulnerability to potential attacks.

Missing Peripheral Lock for an SD Card Controller.
The embedded system needs to perform a set of transactions
with the controller to operate correctly. Such transactions are
represented through a state machine shown in the peripheral-
level box of Figure 8. We note that each transaction starts
from Select CMD and ends at CMD Done. Hence, to guaran-
tee the correct operation of the controller, the state machine
transitions from Select CMD to CMD Done must be secured
atomically by a lock. However, we found no lock spanning
the state machine transitions. This means that concurrent
accesses to the SD card controller may cause unexpected
problems (e.g., data loss or corruption). Recently RIOT devel-
opers have applied a patch to enforce a Bus Lock as shown in
Figure 8. However, the concurrency bug cannot be eliminated
completely without enforcing the Peripheral Lock along with
the Bus Lock.

Real-World Attack Scenario. Embedded systems used in
IoT/CPS devices store various critical information including
secret keys (e.g., passwords) and data logs (e.g., object ap-
proaching detection and mission execution orders facilitating
movement between two waypoints). However, our experi-
ments show that the concurrency bugs at both bus and periph-
eral levels can result into corruption of such information. To
exploit these concurrency bugs, we configured our experimen-
tal embedded system on a BluePill [12] board with an SD
card adapter connected through an SPI interface [22] to run
four threads recording secret data (that is set as PASSWORD)
continuously. When a concurrency bug was triggered in the
middle of a data store operation by enabling concurrent ac-
cesses of multiple threads to the single SPI, we observed two
cases with exploitable patterns. In the first case, one or more
characters out of the eight characters of PASSWORD would be
missing resulting into words such as ASSWORD. In the second
case, the words from different threads would interleave with
each other resulting into words such as PAPASSWORDSSWORD.
We note that while the first case happens only when SPI bus-
level locks are missing, the second case happens when any
of the bus-level or peripheral-level locks are missing. Once
such data corruption or loss happens, legitimate users may be
prevented from accessing their embedded systems. In another
example, the corruption may damage or even lose evidence
for investigation if the entered data is log/forensic data.
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while (true) {
DeviceBus :: callback_info *cb;

Outer Loop
for(cb = callbacks; cb; cb = cb ->next) { L
binfo ->semaphore.take () { // Lock ﬁﬂ

cb ->cb() ; // S1-2: To handle devices
binfo ->semaphore.aive () ; // Unlock

}

/I Code snippet to determine the sleep time
delay(t); // $3: To wait for job completion

}
Figure 9: Simplified code with enforced and ideal lock spans
for multiple devices.

lteration
Number MS5611

S1. Read Teys | S1. Read Tops& Papg
905 |S2. Measure. S2. Measure—

S1. Read[Pyg] | S1. Read (Togs® P,
906 | S2. Measure Tggs | S2. Measure Tgpe& Pggs
S3.Wait  [[S3.Wait |

ICM20789

‘ T : Temperature

P : Pressure
: Inner Loop

Il : Outer Loop

Figure 10: Iterative state machine transitions and operations
for both sensors.

5.6 Case Study II: Sensor Value Corruption

An RAV is controlled by a remote control interface such as
MAVLink [5]. This interface is known to be insecure [59,71]
because it does not employ fundamental network security fea-
tures of encryption and authentication due to its computational
constraints and limited hardware resources. Surprisingly, we
found that this remote interface also allows direct access to
I2C. As a result, anyone can potentially send instructions to
any peripheral attached to I2C via MAVLink [18]. In fact, an
RAV platform employs multiple sensors to accurately mea-
sure the physical state which is critical for its safe operation.
Specifically, for controlling movements along vertical axis,
an RAV employing ArduPilot [11] measures various physical
states including the altitude (measured by barometers such as
MS5611) and the three dimensional angles and accelerations
(measured by an inertia sensor such as MPU6000). Hence, the
corrupted altitude or angle values can cause sudden vertical
movements or loss of the angular control of the vehicle, which
may eventually lead to a crash. Here, we focus on the altitude
corruption case.

Figure 9 shows a pseudo code corresponding to the device
driver of a peripheral. This code has two-layered nested loops
denoted as inner and outer loops. Those loops (outer + inner)
are iteratively executed with the following three states as
described in Figure 10.

¢ S1 (read): In this state, read the sensor value whose mea-
surement was scheduled in the previous iteration (e.g., a
sensor value from MS5611 is read at Iteration 905. This
value was scheduled to be measured at Iteration 904).

* S2 (measure): In this state, schedule a command to measure

void MS5611::run() {

state++;

if(state % 2) { // for odd iteration number (e.g., 905, 907..)
temp = read_temp(); // S1
measure_press(); 11 S2

else { /] even iteration number (e.g., 906, 908..)
press = read_press(); // S1
measure_temp(); 112
altitude = conversion(temp, press);
}
Figure 11: Simplified MS5611 device handler.

void ICM20789::run() {
temp = read_temp(); // S$1
press = read_press(); // S2
measure();

altitude = conversion(temp, press);

=
Figure 12: Simplified 1CM20789 device handler.

sensor value(s) for the next iteration (e.g., a sensor value
from MS5611 scheduled to be measured at Iteration 905 will
be read at Iteration 906).

e S3 (wait): In this state, sleep to wait for job completion
before the next iteration.

While the operations corresponding to the read and
measure states are performed in the inner loop, those cor-
responding to the wait state are performed in the outer loop.
For example, in ArduPilot [11], we found two barometers,
MS5611 and ICM20789, attached to I2C. These barometers
are widely used to calculate the altitude using the pressure
and temperature measurements. The code for MS5611 and
ICM20789 are presented in Figure 11 and Figure 12 respec-
tively. Specifically and interestingly, ICM20789 reads both
pressure and temperature values at each iteration and sched-
ules their measurements for the next iteration. In contrast,
MS5611 reads one of the pressure and temperature measure-
ments in one iteration, and the other one in the next iteration.

In this case, PASAN found that while Bus Lock is enforced,
Peripheral Lock is only partially enforced. Specifically, as
shown in Figure 9, since the existing lock does not cover the
code corresponding to the wait state, a different transaction
can execute in a different thread during the wait state of the
ongoing transaction. As such, both barometers might map the
temperature measurement to the pressure variable and vice
versa, or have sensor values corrupted due to the concurrent
access to these sensors from the remote control interface, e.g.,
MAVLink. As a fix, each driver should employ its own lock to
protect the transaction with its sensor, and the remote control
interface needs to respect these peripheral locks too.

Real-world Attack Scenario. As we mentioned earlier, the
remote communication interface (i.e., MAVLinKk in this case)
is insecure, but allows interfaced users to directly access 12C
or SPI. As such, if an attacker abuses the insecure remote
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interface and exploits this concurrency bug, it can corrupt the
measured sensor values. We experimented with two differ-
ent sensors measuring different states and attached them to
12C: MS5611 and MPU6000 attached to Pixhawk 1 [23] that
is part of the 3DR IRIS+ RAV [3]. In the case of MS5611 (a
barometer), we launched a denial-of-service-like attack via
MAVLink by alternately issuing temperature and pressure
reading commands while the device was in the middle of exe-
cuting one of measurement transactions. When a concurrency
bug is triggered, MS5611 fails to complete the ongoing mea-
suring transaction; consequently, MS5611 reports an abnormal
altitude value. For example, if the current altitude is five me-
ters, it generates a corrupted value (ranging from -3,200 to
3,200 meters) and records it in the flight log. In our exper-
iments, the absolute values of the corrupted measurements
were always larger than 200 meters. Hence, this attack led to
corrupted altitude measurements and caused mission failures
by triggering “safe landing” at an unexpected location.

We also carried out a similar attack targeting MPU6000
(which is used as an accelerometer and gyroscope). The
concurrency bug exploitation causes MPU6000 to generate
corrupted acceleration and gyro values. In our experiments,
MPU6000 produced the three-axe acceleration values in the
range between -120 and -160 m/s/s, where the normal values
should have been between -10.0 and 10.0 m/s/s. Due to ab-
normally large acceleration values, this exploitation caused
the RAV to trigger safe landing or even crash due to severe
control instability.

We believe that the demonstrated concurrency bug exploita-
tion is a meaningful attack vector because of its stealthiness
into ArduPilot (and other autonomous vehicle control soft-
ware) and RTOSes. ArduPilot is one of the most popular RAV
control programs [56,57]. As such, its source code is widely
adopted by various RAV vendors, such as Intel Aero [4], Par-
rot [6] and 3DR [3]. To support debugging and crash investi-
gation, ArduPilot also provides plentiful logging information
including those corresponding to sensor and control states,
and mission tasks. However, ArduPilot does not provide any
meaningful network system logging that requires the sup-
port of full-fledged operating systems (e.g., Linux). Instead,
ArduPilot uses a lightweight RTOS (i.e., ChibiOS) without
such features. Furthermore, ArduPilot’s logging system does
not record any information on MMIO accesses including
12C and SPI. Besides, due to their nondeterminism, concur-
rency bugs are tricky to debug even in the environments with
powerful debugging tools [55]. Overall, due to the absence
of MMIO access and network traces, and difficulty in con-
currency bug debugging, concurrency bug exploitation is a
meaningful attack vector. It will remain an attractive attack
vector (from attackers’ perspective) — even more so after the
improvement of the MAVLink protocol security in the (near)
future.

Why peripheral access concurrency bugs are complex?
While PASAN detects the missing Peripheral Lock, cautious

readers might have found out that while a peripheral lock
within ICM20789 driver protects its transaction to the sensor,
a similar peripheral lock within MS5611 driver still fails to
protect its transaction. Due to the unique code structure within
the MS5611 driver, its de facto transaction with its sensor spans
into two iterations within the outer loop, e.g., calling the driver
twice, which is the only way to get both temperature and
pressure measurements to fulfill the computation of altitude.
Currently, PASAN extracts transaction spans covered by a
single lock span. If one transaction involves two outer itera-
tions of the loop as in MS5611’s transaction (i.e., subset trans-
action span case introduced in Section 5.2), PASAN partially
covers one outer iteration and could not extend to multiple
iterations because the driver itself does not implement the
whole transaction but relies on callees to accomplish it.

6 Discussion

Limitations Inherited from Existing Static Analysis Em-
ployed. PASAN requires call graphs to generate possible
thread call stacks (e.g., “Thread 1 and 2 Call Stack™ in Fig-
ure 6). It also needs to identify aliases of function pointers for
indirect calls, lock objects, and accessed MMIO addresses.
As such, PASAN utilizes points-to analysis [76] for identify-
ing call graphs (including indirect function calls) and alias
variables. The current tools that PASAN relies on have two
well-known limitations in tracking aliases, which can cause
inaccuracy in our concurrency bug detection.

One of the common limitations of points-to analysis is to
over-approximately resolve possible pointers [37] by encom-
passing infeasible function calls or aliases. This may result
in false positives in identifying aliases. Specifically, points-
to analysis may mistakenly identify different MMIO access
variables as identical aliases (causing false positives in con-
currency bug detection), different lock object variables as
identical aliases (causing false negatives), and infeasible indi-
rect call targets (causing false positives). We did not observe
such inaccurate results in our experiments.

The other common limitation of points-to analysis is fail-
ure in tracking aliases to mitigate state explosion of points-to
analysis [52, 64]. Specifically, points-to analysis can fail to
identify the aliases of MMIO access variables (causing false
negatives in concurrency bug detection) and aliases of lock ob-
ject variables (causing false positives). Furthermore, missing
indirect call targets (e.g., device drivers) can cause PASAN
to miss transaction spans (causing false negatives).

Moreover, lockset analysis cannot take into consideration
the timeout locks that are automatically unlocked after a given
time at run time to prevent deadlocks. However, it is challeng-
ing for static analyses to estimate the lock spans affected
by the timing behavior of the timeout locks. Hence, PASAN
conservatively considers the timeout locks as typical locks.
This might cause false negatives in concurrency bug detection
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although we did not observe any in our experiments.

To alleviate the above limitations, we could employ either
(1) more advanced static analysis works [63, 86] that could re-
duce false positives in alias identification or improve points-to
analysis algorithm to reduce false negatives in alias identifi-
cation as DR. CHECKER [64] pointed out, or (2) dynamic
analysis with peripheral modeling as proposed in the prior
work [41, 51]. Especially, dynamic analysis can overcome
limitations in handling special lock operations (e.g., timeout
locking) with emulated boards [41,51]. However, dynamic ap-
proaches may not be directly applicable because they cannot
model various peripheral devices. Furthermore, they suffer
from a limited analysis coverage as they can only analyze
executed code. Further improvement in this direction will be
our future work.

Using Incorrectly Inferred Transaction Spans. Achiev-
ing perfect accuracy on the inference of transaction spans is
not the main goal for our project. However, we point out that
even the incorrectly inferred transaction spans can be useful.
There are three categories of such transaction spans: subset,
superset, and mixed, as explained in Section 5.2. Thanks to
these transaction spans, PASAN did not miss the concurrency
bugs in the MS5611 case (Section 5.6). On the flip side, we
did have several false positive cases caused by inaccurate
transaction extraction.

Validity of Protection for All Peripheral Devices. @We
cannot ascertain whether a peripheral device is tolerant to
buggy concurrent accesses without manual verification due
to its black-box nature. However, we observe that device
drivers often perform read-only accesses to the concurrency-
tolerant peripherals. Based on this observation, we employ
“write-access-inclusion” heuristic in PASAN to exclude those
read-only accesses, which helps remove (false-positive) trans-
actions of those concurrency-tolerant peripherals. As a result,
we observed only one false-positive case with LSMIDS0 (de-
tailes in Section 5.3) due to the concurrency bug-tolerant
peripheral.

Validity of ‘“Write-Access-Inclusion’” Heuristic. PASAN
analyzes all transactions involving at least one write access
to an MMIO address, which is the most common case based
on our experience. We found that including read-only transac-
tions would cause many false positives because the status of
some peripherals (e.g., timer and USART) are concurrency-
tolerant and hence not vulnerable to unprotected concurrent
reads as they maintain their own internal states. Instead, this
heuristic can introduce false negatives by missing read-only
transactions that are not tolerant to concurrency bugs.

Limitation in Handling Individual Interrupts. PASAN
does not support individual interrupt requests (IRQ) as it
would require non-trivial manual efforts to map into IRQs
and their corresponding bit masks which enable/disable in-
dividual interrupts. Also, one mask can be related to multi-
ple IRQs [51]. Furthermore, some interrupts are enabled/dis-

abled dynamically. These challenges can only be addressed
through a dynamic analysis tool with access to the target
device. PASAN, as a static analysis tool, cannot support in-
dividual IRQs, and may lead to false-positives. Fortunately,
we have manually confirmed that, in our evaluation, no false
positive was caused by individual IRQs.

Binary Firmware Support. While we evaluate PASAN
on the source code of firmware in this paper, the fundamen-
tal mechanism may become applicable to binary firmware,
after addressing the following technical challenges. We iden-
tify two specific challenges in obtaining necessary inputs
from binary firmware: (1) A binary firmware needs to be
lifted into compatible LLVM bitcode. Although there are mul-
tiple approaches to doing this [27, 48, 80, 81], their lifting
results are either incompatible or immature for embedded
systems. For example, the results for ARM 32bit architecture
(which is dominant on embedded systems) are not mature
enough®. (2) PASAN must identify key functions, such as
locks, multi-threads and multi-process management functions.
If a firmware is stripped, this information needs to be supple-
mented by other sources such as pattern-based function iden-
tification [34], and binary-based code similarity search [49]
to identify these key functions.

Automatic Lock Enhancement. Since PASAN detects in-
valid concurrency lock behavior, it is a promising idea to use
this information to correct or enhance locks automatically.
Such an automated approach demands very high accuracy on
the extracted lock spans. Otherwise, it may introduce unstable
behavior. We reserve this direction as our future work after
we achieve higher accuracy in lock span extraction.

7 Related Work

Concurrency Bug Detection. The concurrency detection
techniques in the prior art can be broadly classified based on
their analysis methodologies which include static [13, 15, 19—
21,24,32,33,40, 50,69, 79], dynamic [67, 83, 84], and hybrid
(static and dynamic) analysis [54,55,62,67,73]. There are
also some algorithmic [60, 66] and manual detection tech-
niques [32,36,42,65].

Prior static analysis-based schemes are limited to analyzing
single memory objects without considering transactions for
MMIO accesses. Hence, unlike PAS AN, they cannot discover
transaction- and address-range-aware concurrency bugs. The
dynamic analysis-based approaches are applicable to binary-
only programs, they require the aid of specialized hardware,
and they handle only limited types of concurrency bugs. Re-
searchers have also proposed hybrid analysis approaches to
perform dynamic analysis on top of the static analysis results.

8Qut of the four cited tools, only RetDec [27] and mctoll [81] support
ARM 32bit architecture. In our experience, RetDec generates severely incor-
rect control flow results and mctoll generates empty bitcode.
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However, these hybrid analysis approaches require direct ac-
cess to the target peripheral devices. We note that it is not
practical to find concurrency bugs individually in each em-
bedded platform. Development of theoretical algorithms and
manual techniques require non-trivial efforts and instrumen-
tation in identifying transactions of peripherals. In summary,
unlike PAS AN which discovers concurrency issues for periph-
erals, the scope of the approaches in the prior art is limited to
memory object-level concurrency bugs.

Device Driver Vulnerability Detection.  Vulnerabilities
hidden in the device driver have been discovered statically [58,
64,70] as well as dynamically [7,44,72,75,77, 85]. Tradi-
tionally, static analysis relied on symbolic execution [58,70]
to find bugs and vulnerabilities. In a more recent work,
DR.CHECKER [64] leveraged compiler-level program analy-
sis (e.g., points-to analysis and data flow analysis) to find bugs.
Moreover, Charm [77] carried out dynamic analysis of de-
vice drivers in mobile systems. PeriScope [75] wisely hooked
into the page fault handler in the kernel to detect vulnera-
bilities while fuzzing the Wi-Fi drivers. While vUSBf [72]
fuzzed the USB device drivers, Syzkaller [7] integrated multi-
ple kernel fuzzing systems (such as DIFUZE [44]) to fuzz the
kernel functionality including kernel drivers. However, none
of these vulnerability detection approaches can discover bus-
and peripheral-level concurrency issues.

Embedded Firmware Analysis Framework. Both,
static [43,45,46,74] and dynamic [35,38,39,41,51,53,82,87],
approaches have been employed for analyzing embedded
platforms. Following the static analysis approach, Costin et
al. [45], Firmalice [74], and PIE [43] found several network
security vulnerabilities and imperfect API implementations.
FIE [46] was specifically designed to find memory corruption
bugs. To discover bugs such as memory corruption or program
crash, IOTFuzzer [39] was designed to fuzz the bare metal
Internet of Things (IoT) devices. To enable instrumentation
and monitoring, schemes in the existing literature rely on de-
vice emulators [35] or specific hardware interfaces. Moreover,
researchers have also analyzed a limited number of platforms
(e.g., Linux-based platforms) on the emulated environments
which are already well-developed in emulator development
communities [38, 87]. To overcome full emulation require-
ments, some recent works have been proposed [41,51,53].
While Pretender [53] still requires the original hardware to
record the MMIQ’s activity, both P2IM [51] and Halucina-
tor [41] cannot correctly handle some hardware devices such
as DMA. Finally, none of these studies emulated any device
attached to the I/O which limits the coverage of the anal-
ysis results. Overall, unlike PASAN, the dynamic analysis
approaches in the prior art are limited by the requirement
of significant engineering efforts in generating analysis envi-
ronments with actual boards and specialized hardware (e.g.,
GDB, Bluetooth, or client devices). Furthermore, both static
and dynamic analysis approaches focus on program crash,
memory corruption and known security threats.

8 Conclusion

Concurrency bugs in embedded platforms (e.g., RAVs) may
cause a variety of safety and security issues (i.e., from physical
system failure to security critical data corruption). Unfortu-
nately, detection of concurrency bugs is especially challenging
in embedded platforms due to the intricate interplay of the
bus-level and peripheral-level state machines. In this paper,
we propose PASAN, a device-agnostic static analysis-based
approach which addresses this challenge. PASAN detects pe-
ripheral access concurrency bugs automatically by pursuing
a transaction-aware and address-range-aware strategy. We
validate the capabilities of PASAN by evaluating it on seven
real-world embedded platforms, and discover a total of 17 con-
currency bugs in three different platforms. We have reported
these findings to the corresponding parties.
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