ACM CCS 2022

DriveFuzz:

Discovering Autonomous Driving Bugs through Driving Quality-Guided Fuzzing

Seulbae Kim1Major Liu2Junghwan Rhee3Yuseok Jeon4Yonghwi Kwon5Chung Hwan Kim2

¹ Georgia Institute of Technology, ² University of Texas at Dallas, ³ University of Central Oklahoma, ⁴ UNIST, ⁵ University of Virginia

Can we trust autonomous driving systems?

Can we trust autonomous driving systems?

Fatal autopilot accidents continue

Finding bugs via manual testing

Source: "Will Tesla Autopilot hit a dog, human, or traffic cone?" – Youtube Lowlifemike

Source: "Will a Tesla KILL a cat?" – Youtube Carwow

Finding bugs via automated testing

Feedback-driven fuzzing for traditional software

Finding bugs via automated testing

• Feedback-driven fuzzing for autonomous driving systems?

Layers and workflow of Autonomous Driving System (ADS)

Considerations in designing test inputs

Our input space: Driving scenarios

- Representing temporal and spatial domains of real world
- Consists of
 - 3D map
 - Mission (initial and goal positions)
 - Actors (vehicles or pedestrians)
 - Puddles (e.g., black ice)
 - Weather conditions

Mutation of driving scenarios

- Map and mission selection
 - stress ADS with diverse environments
- Actor generation & mutation
 - render diverse interactive situations
- Puddle generation & mutation
 - stress planning & actuation layers with frictional diversity
- Weather mutation
 - affect sensing and perception

Confining mutation to feasible scenarios

- Ensuring physically valid mutation
 - Spatial constraint
 - Initial positions of all actors and objects are spread away (e.g., 5 m)
 - Preventing unrealistic jams (e.g., vehicles overlapping)
 - Temporal constraint
 - Maximum speed of actor vehicles and pedestrians are conservatively set
 - Preventing reckless behaviors (e.g., a person running into a vehicle too quickly)
- Both constraints are configurable

Feedback-driven fuzzing for ADS

Defining bugs

What happens to a buggy ADS?

\$./buggy_program [1] 3541023 segmentation fault ./buggy_program

Classic software bugs

Safety-critical vehicular misbehaviors

Feedback-driven fuzzing for ADS

A need for a new feedback mechanism

General software programs

- Diverse, linear code paths
- More code paths \simeq more bugs found

Autonomous driving system

- Distributed system
- Behavior is driven by state changes in a loop, not code paths

A need for a new feedback mechanism

Solution: Driving quality feedback

Intuition

• Quality of driving \simeq likelihood of misbehaviors

Hard acceleration, braking, and turns

• Metric auto insurance companies use

Oversteer and understeer

 #1 cause of motorsport accidents Minimum distance to other actors

Near-missed collisions

DriveFuzz overview

DriveFuzz in action

- Seed scenario
 - Map
 - Initial position
 - Destination

DriveFuzz in action

21

DriveFuzz in action

Evaluation

- Targeted two autonomous driving systems
 - Autoware
 - A full-fledged ADS with active development status
 - Internationally adopted by well-known auto manufactures (e.g., BMW)
 - Qualified to run driverless vehicles on public roads in Japan (2017~)

Behavior Agent

- A rudimentary ADS developed by CARLA
- Implements path planning and feedback-based PID control
- Complies with traffic laws and avoids collisions

Detected 33 new bugs throughout ADS layers

	Bug #	Layer	Component	Description	Impact	Strategy	Root cause	ACK
Autoware	01	Sensing	Fusion	LiDAR & camera fusion misses small objects on road	С	all	Logic err	
	02	Perception	Detection	Perceives the road ahead as an obstacle at a steep downhill	I	all	Logic err	\checkmark
	03	Perception	Detection	Fails to semantically tag detected traffic lights and cannot take corresponding actions	C, V	all	Logic err	
	04	Perception	Detection	Fails to semantically tag detected stop signs and cannot take corresponding actions	C, V	all	Logic err	
	05	Perception	Detection	Fails to semantically tag detected speed signs and cannot take corresponding actions	v	all	Logic err	
	06	Perception	Localization	Faulty localization of the base frame while turning	C, L	all	Logic err	\checkmark
	07	Perception	Localization	Localization error when moving underneath bridges and intersections	C, L	all	Logic err	\checkmark
	08	Planning	Global planner	Generates infeasible path if the given goal is unreachable	C, L	all	Logic err	\checkmark
	09	Planning	Global planner	Generates infeasible path if the goal's orientation is not aligned with lane direction	C, I, L	all	Logic err	\checkmark
	10	Planning	Global planner	Global path starts too far from the vehicle's current location	C, I, L	all	Logic err	\checkmark
	11	Planning	Local planner	Target speed keeps increasing at certain roads, overriding the speed configuration	S, C	all	Logic err	\checkmark
	12	Planning	Local planner	Fails to avoid forward collision with a moving object	С	all	Logic err	
	13	Planning	Local planner	Fails to avoid lateral collision (ADS perceives the approaching actor before collision)	С	ent	Not impl	
	14	Planning	Local planner	Fails to avoid rear-end collision (ADS perceives the approaching actor before collision)	С	ent	Not impl	
	15	Planning	Local planner	While turning, ego-vehicle hits an immobile actor partially blocking the intersection	С	ent	Logic err	
	16	Actuation	Pure pursuit	Ego-vehicle keeps moving after reaching the destination	C, L	all	Logic err	\checkmark
_	17	Actuation	Pure pursuit	Fails to handle sharp right turns, driving over curbs	C, L	all	Faulty conf	
	18	Perception	Detection	Indefinitely stops if an actor vehicle is stopped on a sidewalk	Ι	ent	Logic err	
	19	Perception	Detection	Flawed obstacle detection logic; lateral movement of an object is ignored	С	con	Logic err	
	20	Planning	Global planner	Generates inappropriate trajectory when initial position is given within an intersection	C, L, V	all	Logic err	
+	21	Planning	Local planner	Improper lane changing, cutting off and hitting an actor vehicle	С	man	Logic err	
Rehavior Ager	5 22	Planning	Local planner	Vehicle indefinitely stops at stop signs as planner treats stop signs as red lights and waits for green	I	all	Logic err	
	23	Planning	Local planner	Vehicle does not preemptively slow down when the speed limit is reduced	S	all	Logic err	
	24	Planning	Local planner	Always stops too far (> 10 m) from the goal due to improper checking of waypoint queue	F	all	Logic err	
	25	Planning	Local planner	Collision prevention does not work at intersections (only checks if actors are on the same lane)	С	all	Logic err	
	26	Planning	Local planner	Fails to avoid lateral collision (ADS perceives the approaching actor before collision)	С	man	Not impl	
	27	Planning	Local planner	Fails to avoid rear-end collision (ADS perceives the approaching actor before collision)	С	man	Not impl	
	28	Planning	Local planner	No dynamic replanning; the vehicle does infeasible maneuvers to go back to missed waypoints	C, L	ins	Not impl	
	29	Actuation	Controller	Keeps over-accelerating to achieve the target speed while slipping, creating jolt back on dry surface	C, L	ins	Not impl	
	30	Actuation	Controller	Motion controller parameters (PID) are poorly tuned, making the vehicle overshoot at turns	C, L	all	Faulty conf	
CARLA	31	Sir	nulator	Simulation does not properly apply control commands	C, L, V	all	Logic err	\checkmark
	32	Sir	nulator	Vector map contains a dead end blocked by objects as a valid lane	I, V	all	Data err	
	33	Simulator		Occasionally inconsistent simulation result	I, V	all	Logic err	\checkmark

[Impact] C: Collision / F: Fails to complete a mission / I: Vehicle becomes Immobile / L: Lane invasion / S: Speeding / V: Miscellaneous traffic Violation [Strategy] all: all strategies / man: Adversarial maneuver-based / con: congestion-based / ent: entropy-based / ins: instability-based

The impact of driving quality feedback

- Fuzzing with and without driving quality feedback
 - Approximately 2x bugs detected with the feedback

An interesting bug

Multi-layer faults

- Sensing & Perception
 - Fails to perceive the puddle
- Planning
 - Fails to consider the slipping state
 - Keeps commanding speed-up
- Actuation
 - Missing Electronic Stability Control (ESC)
 - Keeps increasing the throttle amount

DriveFuzz summary

- DriveFuzz: End-to-end fuzzing framework for ADS
- Mutate driving scenarios
 - Mission, actors, puddles, weather
- Look for safety-critical misbehaviors
 - Collision, infraction, and immobility
- Leverage semantic feedback using driving quality metrics
- Found 30 bugs in two industry grade ADS
 - Readily exploitable by controlling nearby actors or objects
- Additional materials
 - Website & code: <u>https://drivefuzz.autoinsight.dev/</u>

