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MOTIVATION
Intro

q Ubiquitousness of Internet-of-Things (IoT) devices

q On-device Machine Learning
• Performance of edge/IoT applications

• Low bandwidth
• Reducing communication cost

• Privacy of user data

https://www.qualcomm.com/news/onq/2017/08/we-are-making-device-ai-ubiquitous


CHALLENGES
Intro

Image Source: https://www.wallarm.com/what/iot-attack

ØProtection of user data on untrusted and resource-constrained edge/IoT 
devices
Ø Model Inversion Attack
Ø Membership Inference Attack

ØUnfeasible existing techniques for edge/IoT devices
Ø Homomorphic encryption
Ø Differential privacy

Solution:
ü Trusted Execution Environment (TEE) for edge/IoT devices

o ARM TrustZone

https://www.wallarm.com/what/iot-attack


ARM TrustZone
Background

Figure Source: Demystifying Arm TrustZone: A Comprehensive Survey, ACM Computing Surveys, 2019

v ARM: Pioneer in embedded device processors

v TrustZone
• Optional hardware security extension
• Ensures the integrity and confidentiality of an 

application’s data on a device
• Two architectures:

Cortex-A
Cortex-M



ARM TrustZone Limitations
Background

Limitations:

q Resource-intensive DL methods
q Limited trusted memory and resources in TrustZone

Possible Solutions:

q Quantization
q Model pruning 

But affects model’s prediction accuracy



Common Practice: Partitioning
Background

Layer-base Partitioning

Too 
Large!

Typical Trusted Memory ≈ 16 MB

q How to solve?
q Run only a few layers in the TrustZone

Ø Model Inversion Attack
Ø Membership Inference Attack



T-Slices
Our Contribution

Overview:

Ø Utilizes ARM TrustZone with limited trusted memory to protect the entire DL 
execution

Ø Does not sacrifice original prediction accuracy



T-Slices
Our Contribution

§ Partitions DNN layer into smaller independent 
segments called Slices

§ Follows an optimized Memory Management plan 
with on-demand parameter loading scheme
§ Calculated from Hyperparameters

§ Dynamically determines a set of Slices based on the 
available trusted memory buffer in TrustZone



Convolution Operation
Background
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Slicing for Convolution Operation
T-Slices
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Memory Buffer Size Comparison
T-Slices

Darknet Reference Model Alexnet Model



Memory Buffer Size Comparison
T-Slices

Peak memory required to execute any convolution/connected layer in different 
CNN architectures. Trusted memory limit considered as 16 MB.



T-Slices Architecture/Flow
Our Contribution
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Experimental Setting
Evaluation

Ø Device Configuration

• STM32MP157C-DK2 with Cortex-A7 32-bit and 
Cortex-M4 32-bit MPUs

• Raspberry Pi 3 Model B (RPi3B)

Ø Experiment

• Image classification with CNN models

• Compare with Baseline DarkneTZ ɣ

Ø Performance Metric

• Trusted Memory Consumption

• Prediction Time Overhead

• Case Studies against prevalent privacy attacks

ɣ DarkneTZ: towards model privacy at the edge using trusted execution environments, MobiSys 2020

Dataset and Models



Trusted Memory Consumption
Evaluation

• T-Slices on average achieves 72% reduction in peak memory consumption



Prediction Time Overhead
Evaluation

STM32MP157C-DK2 RPi3B

• T-Slices on average achieves 29% improvement in execution time
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Security Analysis
Case Studies

• Model Inversion Attack [1]
• Reconstruct/recover the training data or any sensitive attributes from the trained ML model

• Membership Inference Attack [2]
• Discover whether a given data sample is a part of the training dataset for the trained ML 

model



Limitations & Future Work
Conclusion

qInvestigate vast DL models unsuitable for memory-constrained edge/IoT 
devices
q Peak memory of vgg-16 ~ 923 MB, Yolov3 ~ 840 MB
q Parallel processing using multiple TZ devices

qInvestigate other DL architectures (RNNs)
qInvestigate the capability of side-channel attacks on T-Slices
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